Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption increased within the visible spectrum while the emission increased. The TGA analysis showed more thermal stability for samples mixed with Sm, where the degradation point shifted to higher energy and with less mass loss in the decomposition region. A triplet band were performed in the emission curve for PMMA reinforced with Sm +3. The outcomes show the possibility of using samarium-enhanced PMMA in optical applications.
Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MorePurepolyaniline and doped with hydrochloric acid was prepared in different molarities at room temperature. The a.c electrical properties were stadied.AC conductivityσac (ω), is found to vary as ωS in the frequency range (100Hz-10MH), S< 1and decreases indicating a dominate hopping process. Thedielectric constant ε1and dielectric loss ε2 have been determined for bulk polyaniline. ε1 decrease with the increase frequency. Electrical conductivity measurements increase with the increases both of the amount of HCl and the dose of radiation. The dielectric investigations show decrease with dose radiation.
The current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz
The research included the preparation of cyclic compounds from thiazoles, imidazoles and oxazepines from the reaction of cyclization starting material that acts Schiff bases, which is a raw material in the formation of cyclic compounds from Schiff's(B1) by reaction of 4- aminobenzenesulfonylamide with 4-hydroxyacetophenone which can used to synthesized two lines. The first introducing the preparation of pyrazoles [B4, B5] from ester [B2], which derived to acid hydrazide[B3] with hydrazine hydrate and final pyrazoles obtained by the reaction with diethylmalonate and acetylacetone. The second including prepared the new 1,3-oxazepine1,5-dione derivatives[B6,B7,B8] from adding different anhydrides to the base[B1] as a seven membered ring ; te
... Show MoreCadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.
GaN thin films were deposited by thermal evaporation onto
glass substrates at substrate temperature of 403 K and a thickness of
385 nm . GaN films have amorphous structure as shown in X-ray
diffraction pattern . From absorbance data within the range ( 200-
900 ) nm direct optical energy gap was calculated . Also the others
optical parameters like transmittance T, reflectance R , refractive
index n , extinction coefficient k , real dielectric constant 1 Î , and
imaginary dielectric constant 2 Î were determined . GaN films
have good absorbance and minimum transmittance in the region of
the visible light .
The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l Sb
... Show More