New Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N,N'E,N,N'E)-N,N'-(cyclohexane-1,3-diylidene)bis(4- fluoro-3-(1H-tetrazol-5-yl)aniline) (L1). The reaction of these ligands with the appropriate metal ions gave polymeric metal complexes of the formulae {[M2(L)]Cl}n and [M(L1)Cl2]n (where M = Co(II), Ni(II) and Cd(II)). A range of techniques were used to confirm the entity of ligands and their complexes. The formation of ligands and mode of complexation and geometrical structure of the title polymeric complexes were verified using FTIR, electronic spectra, NMR, ESMS, magnetic susceptibility, micro-elemental analysis, metal content, chloride content and conductance. The analytical and spectroscopic data indicated the formation of four-coordinate complexes, with a tetrahedral geometry for Co(II) and Cd(II), and square planer for Ni(II) in L- and L1 complexes. Biological evaluation of ligands and their polymeric complexes against gram-positive bacteria (G+), Bacillus stubtili, Staphylococcus aureus, and gram-negative bacteria (G−), Escherichia coli and Pseudomonas aeruginosa, showed ligands and their polymeric metal complexes have a good effect on the screened bacteria.
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40 -bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30 -dimethyl-[1,10 -biphenyl]-4,40 -diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1 H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreA variety of liquid crystals comprising heterocyclics 1,3,4-oxadiazol ring [III], aminooxazol [IV]a, and aminothiazol [IV]b were synthesized through a number of steps, beginning of the reaction of 3, 3'- dimethyl - [1, 1'-biphenyl] -4, 4'- diamin, ethyl monochloroacetate and sodium acetate to synthesize diacetate compound[I]. The diester reacted with hydrazine hydrate(N2H4-H2O) to give dihydrazide compound [II], then reacted with Pyruvic acid and phosphorous oxychloride to produce diketone compound [III]. The last compound was reacted with urea and thiourea to give aminooxazol and aminothiazol respectively. The synthesized compounds actually characterized and determined the structures by melting points, FT-IR and 1H-NMR spectroscopies. By u
... Show MoreOxazine and quinazoline has a very important in organic chemistry especially in hetero cyclic fields. this research consist the preparation of 4H,4'H-2,2'-bibenzo[d][1,3]oxazine-4,4'-dione compound (1) from di acid chloride with 2-aminobenzoic acid in pyridine as solvent to give compound (2) 3,3'-diamino-2,2'- biquinazoline-4,4'(3H,3'H)-dione .compound 2 include free amino group .this compound was reacted with maleic and phthalic anhydride for synthesized of cyclic imide compounds (3,4).another reaction for compound 2 with some substituted aromatic aldehyde for prepared of some novel Schiff bases (5-9) contains quinazoline ring. compound 1 was treated with sulfathiazole and sulfadiazine for synthesized of sulfa compounds contains sulf
... Show MoreNew metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes
... Show MoreFive membered heterocyclics derivatives were synthesized in this work by three routes. The first route includes the synthesis of N-benzoic acid 1,2,3,-triazole derivatives (3),(4) by diazotation of methyl-2-amino benzoate and treating the resulted salt (1) with sodium azide and ethyl acetoacetate or acetyl acetone, respectively. In the second route, derivatives of pyrazole (8) pyrazolin-5-one (9), (10) were prepared by the reaction of the salt (1) with some active methylene compounds to give the corresponding hydrazones derivatives (5-7) which then they were treated with hydrazine hydrate. The third route afforded the synthesis of three derivatives (12), (15a), (15b) of thiazolidinone by two different methods. AII compounds were confirmed b
... Show MoreA new Schiff base of 4- flourophenyl-4- nitrobenzyliden (L) ,was prepared and used to prepare a number of metal complexes with Cr (III) , Fe (III), Co(II) ,Ni (II) and Cu (II). These complexes were isolated and characterized by (FITR),UV-Vis spectroscopy and flame atomic absorption techniques in addition to magnetic susceptibility, and conductivity measurements. The study of the nature of the complexes formed in ethanol was done following the molar ratio method gave results, agreed with those obtained from isolated solid state studies. The antibacterial activity for the ligand and its metal complexes were examined against two selected microorganisms, Pseudomonas aeruginosa and Staphylococcus aureus.The results indicated that the complexes
... Show MoreAromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.