To create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% volumetric concentration of microencapsulated phase change material slurry. The monthly variation of global horizontal irradiance in Shiraz highly affected the energy and exergy efficiency of PV-T, with July and October exhibiting the most efficient months, corresponding to 90% and 11.3%, respectively.
The purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Thyroid hormones (TH) regulate the metabolic processes required for normal development and growth; also, to organizemetabolism in adults, any defect in thyroid function leads to abnormality in thyroid hormones level. The current study hasbeen designed to find the relationship between retinol-binding protein-4 and progranulin in the serum of Iraqi women withhypothyroidism and hyperthyroidism, also, to study whether these patients are exposed to a risk of developing diabetes mellitus,and PGRN may be a biomarker in detection early stage of diabetes mellitus.Materials and Methods: in this study, serum samples were obtained from 50 Iraqis women patients, [25 patients withhypothyroidism (G2) and 25 patients with hyperthyroidism (G3)] in addition
... Show MoreIn this research want to make analysis for some indicators and it's classifications that related with the teaching process and the scientific level for graduate studies in the university by using analysis of variance for ranked data for repeated measurements instead of the ordinary analysis of variance . We reach many conclusions for the
important classifications for each indicator that has affected on the teaching process. &nb
... Show More74 fanners were randomily selected from the Lc:ital. of 406 fanners using the Modern Irrigation System up to November , 2000 , for the purpose of wide adoptation of such system. Rcsults indicated according to the data which has been obtained and statistically analysed by the statistical package for the Social Sciences (SPSS) program showed that the majority of the farmers adopted this new system of irrigation due to the increase in the yield up to 5" .
Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreAutomated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat
... Show MoreNowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show More