Preferred Language
Articles
/
5RYK5IsBVTCNdQwCbuPB
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve Bayesian classifier (NBC) have been enhanced as compared to the dataset before applying the proposed method. Moreover, the results indicated that issa was performed better than the statistical imputation techniques such as deleting the samples with missing values, replacing the missing values with zeros, mean, or random values.

Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Statistical Sciences
Use The Coiflets and Daubechies Wavelet Transform To Reduce Data Noise For a Simple Experiment
...Show More Authors

In this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
DEO: A Dynamic Event Order Strategy for t-way Sequence Covering Array Test Data Generation
...Show More Authors

Sequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Lightweight Block and Stream Cipher Algorithm: A Review
...Show More Authors

Most of the Internet of Things (IoT), cell phones, and Radio Frequency Identification (RFID) applications need high speed in the execution and processing of data. this is done by reducing, system energy consumption, latency, throughput, and processing time. Thus, it will affect against security of such devices and may be attacked by malicious programs. Lightweight cryptographic algorithms are one of the most ideal methods Securing these IoT applications. Cryptography obfuscates and removes the ability to capture all key information patterns ensures that all data transfers occur Safe, accurate, verified, legal and undeniable.  Fortunately, various lightweight encryption algorithms could be used to increase defense against various at

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jun 30 2025
Journal Name
Medical Journal Of Babylon
Assessment of Six Polymorphic Variants as Genetic Risks for Coronary Artery Disease: A Case–Control Study
...Show More Authors
Abstract<sec> <title>Background:

Coronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.

Objective:

To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.

Materials and Methods:

This case–contro

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Statistical Applications In Genetics And Molecular Biology
Mixture model-based association analysis with case-control data in genome wide association studies
...Show More Authors
Abstract<p>Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Partial Encryption for Colored Images Based on Face Detection
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
2nd International Conference On Mathematical Techniques And Applications: Icmta2021
Review of clustering for gene expression data
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Sustainability
Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images
...Show More Authors

Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e

... Show More
View Publication
Scopus (5)
Scopus Clarivate Crossref