Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve Bayesian classifier (NBC) have been enhanced as compared to the dataset before applying the proposed method. Moreover, the results indicated that issa was performed better than the statistical imputation techniques such as deleting the samples with missing values, replacing the missing values with zeros, mean, or random values.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAntiviral medications may be the best choices for COVID-19 treatment until particular therapeutic treatments become available. Tamiflu (oseltamivir) is a neuraminidase inhibitor licensed for the management and defense against influenza types A and B. Oseltamivir-based medication combinations are currently being used to treat COVID-19 patients who also have the new coronavirus 1 SARS-CoV-2. 1 Oseltamivir administration was related with a less time spent in the hospital, quicker recovery 1 and discharge, and a decreased mortality rate. Docking is a modern computational method for identifying a hit molecule by assessing the binding ability of molecular medicines within the binding target pocket. In this work, we chose 21 ligand compounds that
... Show MoreBackground: Most prevalent chronic liver disease in developed and developing nations is non-alcoholic fatty liver disease. From fatty liver, which often has benign, non-progressive clinical history, to non-alcoholic steatohepatitis, a more serious variant of fatty liver that can lead to cirrhosis and end-stage liver disease, non-alcoholic fatty liver disease encompasses broad spectrum of diseases. The gold standard for determining extent of hepatic fibrosis is still liver biopsy; however, number of noninvasive tests have been established to make diagnosis and assess effectiveness of treatment.
Objective: Aim of study was to assess effectiveness of the combination of fibroscan and
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThe current research discusses the topic of the formal data within the methodological framework through defining the research problem, limits and objectives and defining the most important terms mentioned in this research. The theoretical framework in the first section addressed (the concept of the Bauhaus school, the philosophy of the Bauhaus school and the logical bases of this school). The second section dealt with (the most important elements and structural bases of the Bauhaus school) which are considered the most important formal data of this school and their implications on the fabrics and costumes design. The research came up with the most important indicators resulting from the theoretical framework.
Chapter three defined the
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
Background: Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by bilateral stenosis starting at the supraclinoid internal carotid artery (ICA), with the development of a collateral network of vessels. It is an established cause of stroke in the pediatric age group. Despite its increasing prevalence in various parts of the world, it remains largely underrecognized in the Middle East, particularly in Iraq. This is the first case of MMD in an Iraqi patient undergoing surgery. Case description: A 12-year-old boy presents with a 3-months history of progressive behavioural changes. MRI revealed diffuse infarcts of different ages. MRA and CT angiography revealed extensive asymmetrical steno-occlusive changes of t
... Show More