Sustainable plant protection and the economy of plant crops worldwide depend heavily on the health of agriculture. In the modern world, one of the main factors influencing economic growth is the quality of agricultural produce. The need for future crop protection and production is growing as disease-affected plants have caused considerable agricultural losses in several crop categories. The crop yield must be increased while preserving food quality and security and having the most negligible negative environmental impact. To overcome these obstacles, early discovery of satisfactory plants is critical. The use of Advances in Intelligent Systems and information computer science effectively helps find more efficient and low-cost solutions. This paper proposed a multiclass classification model that aims to detect diseases in three types of fruit using the leaves plant images dataset. These three types of fruit are (Apple, Cherry, and Strawberry) where Apples have three disease dataset categories (Apple Scab, Black Rot, and Cedar Rust) as well as healthy apple dataset, Cherry have Powdery Mildew disease dataset category and healthy dataset, and Strawberry have leaf Scorch disease dataset category and healthy dataset. These datasets are based on the Kaggle website. These multiclass classifications need several steps of processing; the first step is preprocessing the dataset by resizing all images to the same size, segmentation, and removing noise; then, feature extraction from color and texture features; the next step is feature selection to find optimal features by using the Salp Swarm algorithm (SSA); and classification by using machine learning models (Random Forest), (CatBoost), and (XGBoost). In the final step, evaluation of the performance was used to select several matrices: Accuracy, precision, recall, and F1-score.
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe detection of fungi contaminating maize grain and the effect of four plant extracts Azadirachta indica, Eucalyptus globulus Glycyrrhiza glabra and Zingiber officinale on the growth of A. flavus and its ability to produce AflatoxinB1. The results showed that the incidence of Aspergillus spp., was 52.75% of the isolated fungi, of which 29.50% was due to Aspergillus flavus, followed by Penicillium spp., with an incidence of 21.06%, and then Fusarium spp., with a rate of 18.13%. The percentage of toxin-producing A. flavus isolates reached 70.8% out of 24 isolates. The results showed the effect of alcoholic plant extracts at a concentration of 10 mg/ml on the fungal growth activity of A. flavus, the alcoholic extract of neem leaves was superi
... Show MoreEnvironmental stress affects the yield of sorghum. This impact can be reduced by seed stimulation technique and determining the appropriate planting date. An experiment was conducted in the spring and fall seasons of 2022. Randomized complete block design with split-plot arrangement in four replications was used. Planting dates (spring season: February 15th, March 1st, 15th, April 1st, 15th; fall season: June 15th, July 1st, 15th, August 1st, 15th) were assigned to the main plots. Seed stimulation treatments (banana peel extract 35% + citric acid 100 mg L-1 and soaking in distilled water only) were applied to the subplots. The interaction treatment of soaking with banana peel extract + citric acid and the planting date of April 15th showed
... Show MoreVaccination against novel Coronavirus (SARS-CoV-2) become highly recommended. In Iraq, three vaccines are available. They are Pfizer-Biontech, Oxford-AstraZenica, and Sino harm vaccines. A cross-sectional retrospective study was performed to a total of 2399 individual who are vaccinated with one of the available vaccines. People who are infected with Covid-19 before and/or after vaccination of either studied SARS-CoV-2 vaccines were also involved in this study (1175 case). Signs and symptoms have been reported for each of confirmed positive cases of Coronavirus disease. Statistical data analyses were applied to reveal the effect of different SARS-CoV-2 vaccines on the incidence of novel coronavirus disease among Iraqi population. Also, the
... Show MorePathology reports are necessary for specialists to make an appropriate diagnosis of diseases in general and blood diseases in particular. Therefore, specialists check blood cells and other blood details. Thus, to diagnose a disease, specialists must analyze the factors of the patient’s blood and medical history. Generally, doctors have tended to use intelligent agents to help them with CBC analysis. However, these agents need analytical tools to extract the parameters (CBC parameters) employed in the prediction of the development of life-threatening bacteremia and offer prognostic data. Therefore, this paper proposes an enhancement to the Rabin–Karp algorithm and then mixes it with the fuzzy ratio to make this algorithm suitable
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...