The current study introduces a novel method for calculating the stability time by a new approach based on the conversion of degradation from the conductivity curve results obtained by the conventional method. The stability time calculated by the novel method is shorter than the time measured by the conventional method. The stability time in the novel method can be calculated by the endpoint of the tangency of the conversion curve with the tangent line. This point of tangency represents the stability time, as will be explained in detail. Still, it gives a clear and accurate envisage of the dehydrochlorination behavior and can be generalized to all types of polyvinyl chloride compared to the stability time measured by conventional ones based on measuring the conductivity which cannot be used to compare different compounds because PVC-based compounds may include varying amounts of PVC. As a result, the conventional method is inapplicable in all cases. For example, specific conductivity of 60 µS/cm indicates the same quantity of HCl but a different degradation grade. If this conventional approach is used alone, the results obtained will be inaccurate. Therefore, the novel method possesses greater sensitivity and accuracy for these differences in PVC-based compounds.
Due to the low cost of both unsaturated polyester resin and the plant fibers along with protect of the environment, the wasted Carrot fibers were employed in this study to strengthen and color the resin. Carrot peels powders have been incorporated with unsaturated polyester/ natural fibers (UPE/C.F) gel coats to form a good candidate with good mechanical behaviors in different industrial applications. The wasted carrot peels fibers, were dried, crashed and milled into micro particles sizes (2.5% microns) to improve the mechanical properties (impact energy, Compressive load and Elastic Modulus) of unsaturated polyester. Micro carrot fibers (C.F) have been loaded to unsaturated fibers a
Water one of the most important sources Which is no doubt essential for life surviving, water is vital in many sectors of life e.g. ( agriculture, industrial, power and so many things can’t be restricted on the mentioned items, water has become major problem facing the world today. Competition over water resources between nations has made it as a vital commodity and a justification for waging wars against its neighbor’s countries, there are currently 263 rivers that either cross or demarcate international political boundaries. Geographically, Europe has the largest number of international basins (69), followed by Africa (59), Asia (57), North America (40), and South America (38).The absolute numbers of international basins, as well as t
... Show MoreBackground: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
Environmental stress affects the yield of sorghum. This impact can be reduced by seed stimulation technique and determining the appropriate planting date. An experiment was conducted in the spring and fall seasons of 2022. Randomized complete block design with split-plot arrangement in four replications was used. Planting dates (spring season: February 15th, March 1st, 15th, April 1st, 15th; fall season: June 15th, July 1st, 15th, August 1st, 15th) were assigned to the main plots. Seed stimulation treatments (banana peel extract 35% + citric acid 100 mg L-1 and soaking in distilled water only) were applied to the subplots. The interaction treatment of soaking with banana peel extract + citric acid and the planting date of April 15th showed
... Show MoreAfter the twenty – first century become necessary for us motorcade era in educational a chevements by searching for the best strategies and teaching methods and techniques artotalbagesh resorting to the strategy
Did not use in use in the teaching of the foreseeable material general by voice and teaching perspective for the student of the class fourth science
In particular ,so the researcher asking the question follows:
Can the peer education strategy to have an impact in perspective drawing skill development ?
From here it demonstrated the importance of current research know the impact of p
... Show MoreIn this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat
... Show MoreHypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nano
... Show More