Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
This study emphasizes the infinite-boundary integro-differential equation. To examine the approximate solution of the problem, two modified optimization algorithms are proposed based on generalized Laguerre functions. In the first technique, the proposed method is applied to the original problem by approximating the solution using the truncated generalized Laguerre polynomial of the unknown function, optimizing coefficients through error minimization, and transforming the integro-differential equation into an algebraic equation. In contrast, the second approach incorporates a penalty term into the objective function to effectively enforce boundary and integral constraints. This technique reduces the original problem to a mathematical optimi
... Show MoreThe research aims to define the main and subsidiary criteria for evaluating the industrial market sectors and proposing a model for arranging these criteria according to priority and knowing the highest criteria in terms of relative importance in the General Company for Automobile Trade and Machinery, and for the purpose of establishing this model, experiences in the concerned company were approved, and this study proposes a multi-criteria decision model According to the FEAHP, the expanded fuzzy hierarchical analysis method enables the commercial company to develop clear strategic policies on which the company’s management system depends on determining criteria for evaluating and selecting market sectors and making appropriate
... Show MoreWe have provided in this research model multi assignment with fuzzy function goal has been to build programming model is correct Integer Programming fogging after removing the case from the objective function data and convert it to real data .Pascal triangular graded mean using Pascal way to the center of the triangular.
The data processing to get rid of the case fogging which is surrounded by using an Excel 2007 either model multi assignment has been used program LNDO to reach the optimal solution, which represents less than what can be from time to accomplish a number of tasks by the number of employees on the specific amount of the Internet, also included a search on some of the
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreThis paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap