Polynomial IIR digital filters play a crucial role in the process of image data compression. The main purpose of designing polynomial IIR digital filters of the integer parameters space and introduce efficient filters to compress image data using a singular value decomposition algorithm. The proposed work is designed to break down the complex topic into bite-sized pieces of image data compression through the lens of compression image data using Infinite Impulse Response Filters. The frequency response of the filters is measured using a real signal with an automated panoramic measuring system developed in the virtual instrument environment. The analysis of the output signal showed that there are no limit cycles with a maximum radius of poles of 0.96 in the polynomial bandpass filters. Thus, all the functional requirements for the Integer Parameters Space of the proposed polynomial IIR digital filters were met. The results showed that the data compression and size reducing of an image file is processed without significantly impacting of visual quality. This is achieved by removing redundant or unnecessary information from the image while preserving the important details which removes unnecessary data to make the file smaller and more manageable.
The lipid profile and adipokines of an adolescent may be affected by some parasite infections. Recently, it has been discovered that these parasites are connected to body mass index (BMI), lipids and adipokines. The current study, therefore, aimed to specify how Toxoplasma gondii (T. gondii) affect BMI, lipid profile and adipokines. This study was conducted in Al Madain hospital, Baghdad from October to December 2022. An ELISA test was performed to examine the anti-T. gondii IgG and IgM for a group of adolescents attending the hospital. Based on this examination ninety adolescents were chosen to be involved in the study. They were separated in to two groups: individuals who tested positive for the parasite (n=45) and those who teste
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreA QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThis paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More