Preferred Language
Articles
/
4oYJdYYBIXToZYALj4oz
Synergistic Effect of Nanoparticles and Polymers on the Rheological Properties of Injection Fluids: Implications for Enhanced Oil Recovery
...Show More Authors

New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was used to formulate a novel nanopolymer injection solution for EOR applications to overcome the limitations of simple PAM solutions by the in situ reservoir conditions including high temperature and salinity. A series of measurements were comprehended at controlled pH values to measure the stability and rheological properties of NPs–PAM combinations at different temperatures, salinities, NP concentrations, and shear rates. It is depicted from the results that a higher salinity decreased the viscosity of the polymer formulation. However, ZrO2 NPs–PAM combinations reduced the effect of increased salinity on viscosity, which is essential for EOR applications. Furthermore, at low and medium shear rates, which are more relevant to the flow scenarios in oil reservoirs, ZrO2 NPs–PAM exhibited a higher viscosity than the PAM solution at the same pH and salinity. In contrast, at higher shear rates, the viscosity of ZrO2 NPs–PAM was less than that of the sole PAM solution. Mechanistically, an increased shear rate endorsed the adsorption of polymer molecules onto the surface of NPs, foremost to a lesser polymer concentration in the solution. Moreover, although ZrO2 nanodispersion was unstable at all NPs and salt concentrations, ZrO2 NPs–PAM was stable over an extensive range of salinities and temperatures. The results suggested that ZrO2 NPs–PAM is more suitable than the sole polymer or NP solutions for EOR projects.

Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
New Correlation for Predicting Undersaturated Oil Compressibility for Mishrif Reservoir in the Southern Iraqi Oil Fields
...Show More Authors

Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Effect of Transition Metal Dopant on the Electrical Properties of ZnO-TiO2 Films Prepared by PLD Technique
...Show More Authors

In this article, the influence of group nano transition metal oxides such as {(MnO2), (Fe2O3) and (CuO)} thin films on the (ZnO-TiO2) electric characteristics have been analyzed. The prepared films deposited on glass substrate laser Nd-YAG with wavelength (ℷ =1064 nm) ,energy of (800mJ) and number of shots (400). The density of the film was found to be (200 nm) at room temperature (RT) and annealing temperature (573K).Using DC Conductivity and Hall Effect, we obtained the electrical properties of the films. The DC Conductivity shows that that the activation energies decrease while the σRT at annealing temperature with different elements increases the formation of mixed oxides. The Hall effect, the elec

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 30 2018
Journal Name
Journal Of Pure And Applied Microbiology
The Effect of Polyester Fibers Addition on Some Mechanical Properties of Room Temperature Vulcanized Maxillofacial Silicon Elastomers
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Effect of Diffusion Temperature on the some Electrical Properties of CdS:In Thin Films Prepared by Vacuum Evaporation
...Show More Authors

CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
The Effect of Thickness on Some Optical Properties of Sb2S3 Thin Films Prepared by Chemical Bath Deposition
...Show More Authors

Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
STUDY OF TEMPERATURE EFFECT ON THE HARDNESS FOR EPOXY RESIN AND UNSATURATED POLYESTER
...Show More Authors

This search aim to measure Hardness for Epoxy resin and for unsaturated Polyester resin as base materials for composite Hybrid and the materials used is Hybrid fiber Carbon-Kevlar. The Hand Lay-up method was used to manufacture plates of Epoxy resin (EP) and unsaturated Polyester EP,UPE backed by Hybrid fiber (Carbon-Kevlar) and with small volume fraction 5,10 and 15 for every there are Layer of fibers (1,2 and 3). The hardness test was count for material EP, UPE resin and there composites and that we notice that the Hardness (HB) decreased with increase of temperatures.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Experimental and Simulation for the Effect of Partial Shading on Solar Panel Performance
...Show More Authors

Partial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of   monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Petrophysical Properties of Khasib Formation in East Baghdad Oil Field Southern Area
...Show More Authors

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field.

In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common po

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 30 2025
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Determination of petrophysical properties of Sadi Formation in Halfaya oil field, southern Iraq
...Show More Authors

   This study aimed to evaluate the reservoir petrophysical properties (porosity, water saturation, and permeability) for optimal flow unit assessment within the Sadi Formation. Utilizing open hole logging data from five wells, the Sadi formation was divided into two rock units. The upper unit (A) is 45-50 meters thick, mainly consisting of limestone, mainly consisting of shaly limestone at the lower part. The lower unit (B) has a thickness of approximately 75-80 meters and is primarily composed of limestone, further subdivided into three subunits (B1, B2, B3). The average water resistivity is 0.04 ohm-m, and the average mud filtrate resistivity is 0.06 ohm-m. The Pickett plot was utilized to determine Archie parameters (tortuosit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 25 2015
Journal Name
Comptes Rendus Chimie
A novel method for the synthesis of biodiesel from soybean oil and urea
...Show More Authors

The increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybea

... Show More
Preview PDF
Scopus (11)
Scopus