Preferred Language
Articles
/
4hbtcYcBVTCNdQwCAEog
Flow units and rock type for reservoir characterization in carbonate reservoir: case study, south of Iraq
...Show More Authors
Abstract<p>The current work is focused on the rock typing and flow unit classification for reservoir characterization in carbonate reservoir, a Yamama Reservoir in south of Iraq (Ratawi Field) has been selected, and the study is depending on the logs and cores data from five wells which penetrate Yamama formation. Yamama Reservoir was divided into twenty flow units and rock types, depending on the Microfacies and Electrofacies Character, the well logs pattern, Porosity–Water saturation relationship, flow zone indicator (FZI) method, capillary pressure analysis, and Porosity–Permeability relationship (R35) and cluster analysis method. Four rock types and groups have been identified in the Yamama formation depending on the FZI method, where the first group represents the bad reservoir quality (FZI-1) (Mudstone Microfacies and Foraminiferal wackestone Microfacies), the second group reflects a moderate quality of reservoir (FZI-2) (Algal wackestone–Packstone Microfacies and Bioclastic wackestone–Packstone Microfacies), the third group represents good reservoir quality (FZI-3) (Peloidal Packstone–Grainstone Microfacies), and the fourth group represents a very good reservoir quality (FZI-4) (Peloidal–oolitic Grainstone Microfacies). Capillary pressure curves and cluster analysis methods show four different rock types: a very good quality of reservoir and porous (Mega port type) (FZI-4) (Peloidal–oolitic Grainstone Microfacies) with a low irreducible Water saturation (Swi), good quality of reservoir and porous (Macro port type) (FZI-3) (Peloidal Packstone–Grainstone Microfacies), moderate quality of reservoir (Meso port type) (FZI-2) (Algal wackestone–Packstone Microfacies and Bioclastic wackestone–Packstone Microfacies), and a very fine-grained with bad reservoir quality (Micro port type) (FZI-1) (Mudstone Microfacies and Foraminiferal wackestone Microfacies) and with the higher displacement of pressure). These capillary pressure curves support the subdivision of the main reservoir unit to flow units. </p>
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 22 2017
Journal Name
Geological Society, London, Special Publications
Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin, Iraq
...Show More Authors

View Publication
Scopus (23)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Development of 1D-Synthetic Geomechanical Well Logs for Applications Related to Reservoir Geomechanics in Buzurgan Oil Field
...Show More Authors

Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani

... Show More
Crossref (1)
Crossref
Publication Date
Fri Jan 24 2020
Journal Name
Petroleum And Coal
Evaluation of Geomechanical Properties for Tight Reservoir Using Uniaxial Compressive Test, Ultrasonic Test, and Well Logs Data
...Show More Authors

Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Petroleum And Coal
Evaluation of geomechanical properties for tight reservoir using uniaxial compressive test, ultrasonic test, and well logs data
...Show More Authors

Scopus (8)
Scopus
Publication Date
Fri Sep 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Geological Model of Khasib Reservoir- Central Area/East Baghdad Field
...Show More Authors

The Geological modeling has been constructed by using Petrel E&P software to incorporate data, for improved Three-dimensional models of porosity model, water saturation, permeability estimated from core data, well log interpretation, and fault analysis modeling.

Three-dimensional geological models attributed with physical properties constructed from primary geological data. The reservoir contains a huge hydrocarbon accumulation, a unique geological model characterization with faults, high heterogeneity, and a very complex field in nature.

The results of this study show that the Three-dimensional geological model of Khasib reservoir, to build the reservoir model starting with evaluation of reservoir to interpretation o

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
The Optimum Reservoir Performance of Nahr Umr/Ratawi Oil Field
...Show More Authors

Reservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with production rat

... Show More
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Fuel
Wettability of nanofluid-modified oil-wet calcite at reservoir conditions
...Show More Authors

Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte

... Show More
Scopus (137)
Crossref (128)
Scopus Clarivate Crossref
Publication Date
Mon Dec 10 2018
Journal Name
Day 3 Wed, December 12, 2018
Experimental Comparison between WASP and LSASF in Bartlesville Sandstone Reservoir Cores Bearing Heavy Oil
...Show More Authors

Low salinity (LS) water flooding is a promising EOR method which has been examined by many experimental studies and field pilots for a variety of reservoirs and oils. This paper investigates applying LS flooding to a heavy oil. Increasing the LS water temperature improves heavy oil recovery by achieving higher sweep efficiency and improving oil mobility by lowering its viscosity. Steam flooding projects have reported many problems such as steam gravity override, but override can be lessened if the steam is is alternated with hot LS water. In this study, a series of reservoir sandstone cores were obtained from Bartlesville Sandstone (in Eastern Kansas) and aged with heavy crude oil (from the same reservoir) at 95°C for 45 days. Five reservo

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Prediction of pore and fracture pressure using well logs in Mishrif reservoir in an Iraqi oilfield
...Show More Authors

View Publication
Crossref (4)
Crossref