To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and multi-objective optimizations are performed using the predictive model to optimize the thermal and electrical productivity under different scenarios. The findings indicate the significance of the thermal exergy effectiveness, as evidenced by its low P-value for all solar system responses, indicating its crucial role in the predictive model. For single-objective optimization, the desirability is equal to 1 in cases where only heat transfer efficiency, whole energy effectiveness, or thermal exergy efficiency is maximized or only destroyed exergy is minimized. The improvements in energy and exergy efficiencies range from 3.55% to 69.13%, with the amount of destroyed exergy reduced by 81.47% compared to the base case. For multi-objective optimization, desirability values exceeding 0.829 and 0.655 are obtained for single and multi-objective scenarios, respectively, indicating that the expected performance is within desirable limits. The findings provide valuable insights for designing high-efficiency photovoltaic/thermal systems and addressing their challenges and limitations.
<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
John Updike’s use of setting in his fiction has elicited different and even conflicting reactions from critics, varying from symbolic interpretations of setting to a sense of confusion at his use of time and place in his stories. The present study is an attempt at examining John Updike’s treatment of binary settings in Pigeon Feathers and Other Stories (1962) to reveal theme, characters’ motives and conflicts. Analyzing Updike’s stories from a structuralist’s perspective reveals his employment of two different places and times in the individual stories as a means of reflecting the psychological state of the characters, as in “The Persistence of Desire”, or expressing conflicting views on social and political is
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreThe meanings attributed to Female Genital Mutilation/Cutting (FGM/C) are shaped through complex negotiations within religious and socio-cultural frameworks, including those observed in Indonesia. Using a combined qualitative and quantitative (mixed methods)-ethnographic and survey approach, data from 109 students of religious tertiary institutions in East Kalimantan on their perspectives on FGM/C practices can be more comprehensively explored. The results of the study, which were analysed using the three principles of symbolic interactionism, showed that 72.5 per cent of religious college student families still practice FGM/C and 53.2 per cent stated that FGM/C practices are beneficial for women. However, they are also willing, if
... Show MoreThe rate of gas induction was measured in gas-inducing type mechanically agitated contactors provided with two impellers. A reactor of 0.5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of two equal diameter stirrers; the top impeller is shrouded-disk/curved-blade turbine with six evacuated bending blades, while the bottom impeller was disk turbine. The impeller speed was varied in the range of 50 to 800 rpm. The ratio of impeller diameter to tank diameter (D/T) and the submergence (S) of upper impeller from the top were varied. The effects of clearance of lower impeller from the tank bottom (C2) an
... Show MoreA review of the literature on intellectual capital development was conducted using systemic criteria for the inclusion of relevant studies. The concepts behind the ideas explored in the present study were discussed in respect to the subject matter. Examining the past state of the art in the intellectual capital sector for achieving high levels of innovation performance provided a multidimensional picture of intellectual capital, innovation performance, and dynamic capabilities. The present review was designed to illustrate the correlation between intellectual capital and innovation performance, as well as the role of dynamic capabilities in moderating the relationship between these constructs. Accordingly, we presented an extensive
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreThis work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show More