Preferred Language
Articles
/
4haaAowBVTCNdQwCbvVI
Optimizing performance of water-cooled photovoltaic-thermal modules: A 3D numerical approach
...Show More Authors

To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and multi-objective optimizations are performed using the predictive model to optimize the thermal and electrical productivity under different scenarios. The findings indicate the significance of the thermal exergy effectiveness, as evidenced by its low P-value for all solar system responses, indicating its crucial role in the predictive model. For single-objective optimization, the desirability is equal to 1 in cases where only heat transfer efficiency, whole energy effectiveness, or thermal exergy efficiency is maximized or only destroyed exergy is minimized. The improvements in energy and exergy efficiencies range from 3.55% to 69.13%, with the amount of destroyed exergy reduced by 81.47% compared to the base case. For multi-objective optimization, desirability values exceeding 0.829 and 0.655 are obtained for single and multi-objective scenarios, respectively, indicating that the expected performance is within desirable limits. The findings provide valuable insights for designing high-efficiency photovoltaic/thermal systems and addressing their challenges and limitations.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Countercurrent Flow Cooling Towers
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Mar 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Pulsator Clarifier (Low Turbidity)
...Show More Authors

Experimental and theoretical investigations are presented on flocculation process in pulsator clarifier. Experimental system was designed to study the factors that affecting the performance of pulsator clarifier. These factors were water level in vacuum chamber which range from 60 to 150 cm , rising time of water in vacuum chamber which having times of 20,30 & 40 seconds , and sludge blanket height which having heights of 20,30 & 40 cm .The turbidity and pH of raw water used were 200 NTU and 8.13 respectively. According to the jar test, the alum dose required for this turbidity was 20 mg/l .The performance parameters of pulsator clarifier such as , turbidity ,total solid TS , shear rate , volume concentration of sludge blanket an

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of the Fluidized-Beds Adsorbers
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
2009 Wri International Conference On Communications And Mobile Computing
Optimization of Cooperation Sensing Spectrum Performance
...Show More Authors

Cooperation spectrum sensing in cognitive radio networks has an analogy to a distributed decision in wireless sensor networks, where each sensor make local decision and those decision result are reported to a fusion center to give the final decision according to some fusion rules. In this paper the performance of cooperative spectrum sensing examines using new optimization strategy to find optimal weight and threshold curves that enables each secondary user senses the spectrum environment independently according to a floating threshold with respect to his local environment. Our proposed approach depends on proving the convexity of the famous optimization problem in cooperative spectrum sensing that stated maximizing the probability of detec

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Experimental and numerical study of the bulb's location effect on the behavior of under-reamed pile in expansive soil
...Show More Authors
Abstract<p>In this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively. <italic>PLAXES 3D</italic> was used to conduct the research. In expansive soil, the under-reamed piles were 350 mm long, with the pile tip in dense sandy soil. The experiment was carried out in both saturated and unsaturated circumstances. The influence of the bulb location on the pile's bearing capacity for vertical and lateral loads, as well as the amount of swelling pressure and upward movement owing to swelling, was investigated. The re</p> ... Show More
Crossref (4)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Investigation for Simulation of Thermophysical Properties for Polypropylene 575 Polymer Melts in Single Screw Extruder
...Show More Authors

A numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Educational And Psychological Researches
The relationship between the multiple intelligence and the numerical sense of mathematic subject among 4th secondary stage students
...Show More Authors

The study aimed to investigate the relationship between the multiple intelligence and the numerical sense. The chosen population of the study was the 4th secondary stage students. The sample consisted of 400 female and male student. The researcher utilized two test; multiple intelligence test which include three categories of intelligence (logical-mathematical, spatial, and linguistics) consisted of (36) item, and the numerical sense test that consisted of (44) item. The two tests were constructed by the researcher himself. The psychometric properties of the test were also verified. The results showed that there was a correlation between the multiple intelligence and the numerical sense as well as the students’ means scores

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 12 2024
Journal Name
Semiconductor Physics, Quantum Electronics And Optoelectronics
Numerical study of single-layer and interlayer grating polarizers based on metasurface structures for quantum key distribution systems
...Show More Authors

Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Experimental and numerical investigation on the behavior of reinforced reactive powder concrete two-way slabs under static load
...Show More Authors

This paper studied the behaviour of reinforced reactive powder concrete (RPC) two-way slabs under static load. The experimental program included testing three simply supported slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. Tested specimens were of identical properties except their steel fibers volume ratio (0.5 %, 1 %, and 1.5 %). Static test results revealed that, increasing steel fibers volume ratio from 0.5% to 1% and from 1% to 1.5%, led to an increase in: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). The stiffness and ductility of the specimens also increased. A

... Show More
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Thermal Efficiency for Passive Solar Chimney with and Without Heat Storage material
...Show More Authors

In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i

... Show More
View Publication Preview PDF
Crossref (2)
Crossref