The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimizing deep learning models to operate efficiently on mobile devices, (2) ensuring real-time inference without compromising accuracy, (3) maintaining user privacy when processing sensitive facial data, and (4) addressing the variability in mobile phone cameras, input resolution, and platform limitations across Android and iOS. Furthermore, the increasing sophistication of identity spoofing attacks—such as 3D masks and AI-generated faces—demands more sophisticated, robust, and multimodal detection technologies. The research findings provide a clear roadmap toward practical solutions. By evaluating the latest deep learning architectures, datasets, and anti-spoofing metrics, the study proposes a comprehensive React Native deployment path using TensorFlow Lite and TensorFlow.js to ensure cross-platform compatibility. The proposed system offers a unified classification of identity spoofing attacks and defense mechanisms, along with a structured evaluation framework that compares on-device processing with server-side detection. The results demonstrate that optimized models can achieve high accuracy, low false accept/rejection rates, and sub-second processing speeds on mobile devices. Ultimately, the study provides practical design guidelines for building robust, privacy-preserving, efficient, and real-world consumer-grade fake face detection systems.
Walkability as one of the Planning Treatments to Face Epidemics in Cities
Abstract.The goal of this article is to find the CEO of Iraqi companies that use strategic planning and determine if they are capable of diagnosing the traits of strategic planning systems that improve these companies' capacity to successfully address crisis-related needs. The capacity of the company to successfully react to crisis needs and demands is enhanced by the use of strategic planning, according to a review of data from 64 enterprises utilizing statistical analysis. Furthermore, top and division or unit managers must be involved and committed for strategic planning to be successful. It also has to be planned with an external orientation and get more than just lip service from top and unit or division level managers. In other words,
... Show MoreThe sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI genera
... Show MoreContent-based image retrieval has been keenly developed in numerous fields. This provides more active management and retrieval of images than the keyword-based method. So the content based image retrieval becomes one of the liveliest researches in the past few years. In a given set of objects, the retrieval of information suggests solutions to search for those in response to a particular description. The set of objects which can be considered are documents, images, videos, or sounds. This paper proposes a method to retrieve a multi-view face from a large face database according to color and texture attributes. Some of the features used for retrieval are color attributes such as the mean, the variance, and the color image's bitmap. In add
... Show MoreABSTRACT: BACKGROUND: The main goal of facelift surgery is to reduce the effect of aging by reposition of face soft tissue in to more youthful orientation. There are many methods for SMAS plication which had different design and vector of pull. AIM OF STUDY: To evaluate the effectiveness and longitivity of 7 shaped SMAS plication in facelift. PATIENT AND METHODS: From January 2020 to march 2021, 10 female patients with age (45-60) years were presented with facial sagging, those patients were subjected to subcutaneous facelift with 7 shaped SMAS plication with fat greft in Al-Shaheed Ghazi Al-Harri Hospital and Baghdad burn medical center at Baghdad medical complex. RESULTS: The average follow up period was 6 to 12 months. The mean operative
... Show MoreEthanolic crude extracts of leaves from Laurus nobilis and Alhagi maurorumfor were screened for alkaloids, saponins, tannins, anthraquinones, steroids, flavonoids, glycosides, and glucosides contents. Biochemical activities, including antibacterial activity, antioxidant, and antihemolytic activity, were investigated. Antibacterial activity against Three types of pathogenic bacteria was detected by disc diffusion analysis and characterized by zone of inhibition (ZOI). Antioxidant properties were determined by a diphenyl-1- picrylhydrazyl (DPPH) method. Results revealed that the inhibitory activity of the plants against G+ve and G-ve bacteria were different, where the greatest ZOI of Alhagi maurorum a
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show More