The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimizing deep learning models to operate efficiently on mobile devices, (2) ensuring real-time inference without compromising accuracy, (3) maintaining user privacy when processing sensitive facial data, and (4) addressing the variability in mobile phone cameras, input resolution, and platform limitations across Android and iOS. Furthermore, the increasing sophistication of identity spoofing attacks—such as 3D masks and AI-generated faces—demands more sophisticated, robust, and multimodal detection technologies. The research findings provide a clear roadmap toward practical solutions. By evaluating the latest deep learning architectures, datasets, and anti-spoofing metrics, the study proposes a comprehensive React Native deployment path using TensorFlow Lite and TensorFlow.js to ensure cross-platform compatibility. The proposed system offers a unified classification of identity spoofing attacks and defense mechanisms, along with a structured evaluation framework that compares on-device processing with server-side detection. The results demonstrate that optimized models can achieve high accuracy, low false accept/rejection rates, and sub-second processing speeds on mobile devices. Ultimately, the study provides practical design guidelines for building robust, privacy-preserving, efficient, and real-world consumer-grade fake face detection systems.
Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreTheatrical production mechanisms were determined according to the extents of the theatrical performance, the directing plan, and the ideas that the theatrical performance seeks to convey to the audience. Accordingly, theatrical production mechanisms differ between one theatrical performance and another according to the requirements of each of them and the surrounding circumstances that accompany the production of theatrical performance, and in order to search for production mechanisms and their repercussions on the show. Theatrical The current research was divided into four chapters, namely (Chapter One - Methodology), which identified the research problem in the following question: What are the production mechanisms and their implicatio
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreThe current research aimed to identify the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis. It also aims to identify the recovery and resuming plan to the business environment. The research followed the descriptive survey to find out the views of 34 internal auditors at various functional levels in the Kingdom of Saudi Arabia. Spreadsheets (Excel) were used to analyze the data collected by a questionnaire which composed of 43 statements, covering the tasks that the internal auditors can perform to face the COVID-19 crisis. Results revealed that the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis is to en
... Show MoreThe study aims to examine the reality of preparing the Arabic language teacher for non-native speakers by presenting the experience of the Arabic Language Institute at the International University of Africa. Thus, it addresses the following questions: How is it possible to invest the long scientific experiences in proposal and experiment preperations to qualify Arabic language teachers for non-native speakers? What is the reality of preparing an Arabic language teacher at the Institute? How did the Arabic Language Institute process teacher preparation? What are the problems facing the preparation of the Arabic language teachers and the most important training mechanisms used in that Institute?What problems faced the implementation of the
... Show MoreMarshlands environment in southern Iraq is unique and is considered a habitat of thousands of migratory birds as shelter and a source of livelihood for thousands of people living there. Its environment is characterized by a fragile ecosystem that requires great care and effort to achieve the greatest possible balance and parallelism of development, which necessarily require careful environmental planning that accurately regulates the resources of the environment and therefore, planned the best way to use them. The idea of research for creating the spatial organization of the development of the human settlements and taking into account the environmental aspect by thinking for the plann
This study is targeting the new developed materials and techniques and how they were affected by the scientific and technological developments that contributed to revelated new and varied developed materials and techniques. And from the artist’s formulation by using the materials and techniques and through its embodiment and sensor the values, artistic and aesthetic standards by breaking from the familiar in aesthetic contemporary way.
The studies on questioning what’s the role of The New Developed Materials and Techniques in exposing the aesthetic of the art work?
This study is to show the aesthetic of the art work through the new developed materials and techniques. Which was based on descriptive analyzing method and hig
... Show MoreObjective: To evaluate nurses' practices concerning isolation techniques for Adult Leukemic Patients (ALP).
Methodology: A descriptive study was carried out at the isolation rooms at leukemic wards in Baghdad Teaching
Hospitals, starting from Jan. 27th 2008 up to the 27th of Apr. 2008. To achieve the objectives of study, a non-probability
"purposive" sample of (50) nurse was selected out of four Teaching Hospitals in Baghdad city were selected according
to the criteria of the study sample.
The study instrument consisted of two major parts. It is based on the review of literature. First is concerned with
demographic data for nurses; and the second part is observational tool (checklist) is composed of (83) item. The conte
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More