The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimizing deep learning models to operate efficiently on mobile devices, (2) ensuring real-time inference without compromising accuracy, (3) maintaining user privacy when processing sensitive facial data, and (4) addressing the variability in mobile phone cameras, input resolution, and platform limitations across Android and iOS. Furthermore, the increasing sophistication of identity spoofing attacks—such as 3D masks and AI-generated faces—demands more sophisticated, robust, and multimodal detection technologies. The research findings provide a clear roadmap toward practical solutions. By evaluating the latest deep learning architectures, datasets, and anti-spoofing metrics, the study proposes a comprehensive React Native deployment path using TensorFlow Lite and TensorFlow.js to ensure cross-platform compatibility. The proposed system offers a unified classification of identity spoofing attacks and defense mechanisms, along with a structured evaluation framework that compares on-device processing with server-side detection. The results demonstrate that optimized models can achieve high accuracy, low false accept/rejection rates, and sub-second processing speeds on mobile devices. Ultimately, the study provides practical design guidelines for building robust, privacy-preserving, efficient, and real-world consumer-grade fake face detection systems.
AR Al-Heany BSc, PKESMD MSc., PSAANBS PhD, APAANMD MSc., DDV, FICMS., IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2014 - Cited by 14
Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show MorePurpose: To identify the size of the food gap for the main agricultural products and crops in Iraq, which reflects to us the extent to which agricultural production in particular and the agricultural sector in general have declined.Theoretical framework: The theoretical side of the research dealt with the definition of self-sufficiency and the food gap, as well as identifying the reality of agricultural production in Iraq during the study period, as well as the reality of the food gap for the most important agricultural, plant and animal products.Design/methodology/approach: In reviewing the research problem, the researcher adopted the method of deductive and descriptive analysis based on the presentation and detail of official data
... Show MoreThe aim of the research is to determine the requirements for developing the technical capabilities of the agricultural extension service providers to face the effects of climatic changes in Baghdad Governorate, to achieve the goal of the research and in order to obtain the respondents’ approval of the requirements (28) requirements were identified in the light of the literature and studies related to the subject and the opinions of specialists to develop the technical capabilities of the agricultural extension service providers distributed on two axes (the ability to know the effects of climate changes, the ability to know the practices to reduce the effects of climate changes). The
Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreCohesion is well known as the study of the relationships, whether grammatical and/or lexical, between the different elements of a particular text by the use of what are commonly called 'cohesive devices'. These devices bring connectivity and bind a text together. Besides, the nature and the amount of such cohesive devices usually affect the understanding of that text in the sense of making it easier to comprehend. The present study is intendedto examine the use of grammatical cohesive devicesin relation to narrative techniques. The story of Joseph from the Holy Quran has been selected to be examined by using Halliday and Hasan's Model of Cohesion (1976, 1989). The aim of the study is to comparatively examine to what extent the type
... Show MoreThe study was carried out to study the quality of 7 samples of imported frozen chicken that are available in locally markets. These samples were collected from Baghdad markets in June 2010. The results were showed that the all samples were not content the name of company and batch number one the labeling, while the microbial test refer to found contamination in all samples, but it in the limited of Iraqi standers specification for frozen chicken, also note Staphylococcus aureus in all samples, the samples C1 and C2 have Salmonella ohio, while not observe Coliform bacteria in all samples.
Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id
... Show More