Preferred Language
Articles
/
4UJpUZsBMeyNPGM3FNlb
Low-complexity Deep Learning for Joint Channel-type Identification and SNR Estimation in MIMO-OFDM Using CNN–BRNN with LUT Labels
...Show More Authors

Channel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). The method was tested on Single-Input Single-Output (SISO),the 2×2 Alamouti space-time code,and 4×4 Quasi-Orthogonal Space-Time Block Coding (QO-STBC) in six standard situations: Nakagami fading,Log-Normal shadowing,Multipath fading,Gaussian,Rayleigh fading,and Rician fading. Channel identification was nearly perfect,and the SNR was robust,with most SNR errors being in adjacent bins indicating stable behaviour. The model reached 99.68% validation accuracy with 8.14 × 10−5 bit error rate (BER) and reduced complexity of 1.78 × 108 for high order of subcarriers The method’s novelty lies in accurate,low-complexity CE support from raw symbols and its demonstrated impact on end-to-end BER pilotless CE and SNR estimation to select equalizer without CSI reconstruction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 14 2021
Journal Name
Wireless Personal Communications
A Partial CSI Estimation Approach for Downlink FDD massive-MIMO System with Different Base Transceiver Station Topologies
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (43)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (29)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Jan 14 2025
Journal Name
South Eastern European Journal Of Public Health
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre

... Show More
View Publication
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Water Flow Visualization And Velocity Measurement Using Hydrogen Bubble Generation Technique In Low Speed Open Channel
...Show More Authors

Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jul 01 2025
Journal Name
Mastering The Minds Of Machines
Deep Reinforcement Learning: Bridging Learning and Control in Intelligent Systems
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Sep 21 2021
Journal Name
Journal Of Healthcare Engineering
Complexity and Entropy Analysis to Improve Gender Identification from Emotional-Based EEGs
...Show More Authors

Investigating gender differences based on emotional changes becomes essential to understand various human behaviors in our daily life. Ten students from the University of Vienna have been recruited by recording the electroencephalogram (EEG) dataset while watching four short emotional video clips (anger, happiness, sadness, and neutral) of audiovisual stimuli. In this study, conventional filter and wavelet (WT) denoising techniques were applied as a preprocessing stage and Hurst exponent

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Proceedings Of The 5th International Conference On Communications And Broadband Networking
Bit precision and Cyclic prefix effect on OFDM Power Consumption Estimation
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref