تتبلور فكرة البحث حول التوصل لنوع العلاقة التي تربط التعليم الالكتروني خلال جائحة كورونا برفع المهارات التكنولوجية للأساتذة والطلاب، وتبرز أهمية البحث في ان نجاح الوصول لهذه العلاقة يمكن الإفادة منها في تغيير منهجية تطوير المهارات التكنولوجية مستقبلا وذلك باعتماد الجوانب التطبيقية الفعلية بدلا من الدورات وورش العمل والتي قد لا تضاهي الطريقة العملية في رفع مستوى المهارات المختلفة سواء التدريسية او التكنولوجية، بلغ مجموع عينة البحث 80 فردا توزعوا على فئتين هما التدريسيين (36) استاذاً وبنسبة (45 %) والثانية هي الطلبة للمستويين الأولية (37) طالباً وبنسبة (46%) ودراسات عليا (7) طلاب وبنسبة (9 %) من مجموع عينة البحث، ومن خلال هذه العينة سيتم الوصول الى تحقيق الهدف المطلوب من هذا البحث من خلال نتائج تعبر عن الواقع. وخلال تطبيق إجراءات البحث تم الوصول الى مجموعة من النتائج أهمها هي: تبين ان هناك فجوة واضحة لدى عينة البحث بين مهارات العمل على الكومبيوتر قبل وبعد التعليم الالكتروني ففي المدة التي سبقت إجراءات التعليم الالكتروني كانت مهارات معظمهم (40 %) بمستوى ضعيف وان (35 %) منهم مهاراتهم جيدة جدا في حين ان (25 %) مهاراتهم ضعيفة، لكن بعد تطبيق إجراءات التعليم الالكتروني لوحظ ارتفاع في هذه المهارات وبنسبة عالية جدا بلغت (76 %) مهاراتهم جيدة جدا وهذه إشارة إيجابية على أثر التعليم الالكتروني في رفع المهارات التكنولوجية للمجتمع المبحوث
Subsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the e
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe research included five sections containing the first section on the introduction of the research and its importance and was addressed to the importance of the game of gymnastic and skilled parallel effectiveness and the importance of learning, but the problem of research that there is a difference in learning this skill and difficulty in learning may be one of the most important reasons are fear and fear of falling and injury, And a lack of sense of the movement of the movement is one of the obstacles in the completion of the skill and the goal of research to design a device that helps in learning the skill of descending Almtor facing with half a cycle according to the typical locomotor track on the parallel device of the technical men'
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreRutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show Moreيهدف البحث الى تطبيق تزامن تصميم عملية انتاج معجون الاسنان في مصنع المامون التابع للشركة العامة للمنتوجات الغذائية مع نظام تكاليف الجودة المطبق في الشركة لتحقيق الميزة التنافسية. وتمثلت مشكلة البحث في أن الشركة عينة البحث لا تستخدم نظام تكاليف الجودة بالتزامن مع تصميم عملية إنتاج هذا المنتج لاغراض تحقيق الميزة التنافسية حيث تواجه منتجات الشركة منافسة عالية في الاسواق المحلية. إن الشركة تطبق نظام تكاليف الج
... Show MoreA seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus
... Show More