In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.
A histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric pits in the gizzard, which are full with koilin. Lamina properia in both types contained gastric g
... Show MoreA histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric p
... Show MoreThe purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .
Suppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreIn the city of Hebron, small business industrial organizations face a major challenge related to its ability to reach, attract and sustain a sufficient number of customers in order to ensure its continuity and sustainability. The research problem is summarized in an attempt to reveal how the e-marketing could improve and support the marketing effectiveness of small business industrial organizations in the city of Hebron/Palestine. The importance of this research stems from the fact that it addresses a new knowledge branch of the field of marketing, which is electronic marketing for small business organizations, and the fact that the research highlights appropriate marketing solutions for these organizations in light of the Intern
... Show MoreIt was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.