This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
Almost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreWaveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show MoreThis paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
Streamlined peristaltic transport patterns, bifurcations of equilibrium points, and effects of an inclined magnetic field and channel are shown in this study. The incompressible fluid has been the subject of the model's investigation. The Reynolds values for evanescence and an infinite wavelength are used to constrain the flow while it is being studied in a slanted channel with a slanted magnetic field. The topologies over their domestic and cosmopolitan bifurcations are investigated for the outcomes, and notion of the dynamical system are employed. The Mathematica software is used to solve the nonlinear autonomous system. The flow is found to have three different flow distributions namely augmented, trapping and backward flow. Outc
... Show More