P. aeruginosa is one of the complex targets for antimicrobial chemotherapy. Also, it is intrinsically resistant to several antibiotics. It produces β-lactamases enzymes that are responsible for the widespread β-lactam antimicrobial resistance. There are three major groups of β-lactamase enzymes, MBLs and ESBLs forming Pseudomonas is a major issue for the treatment of burns victims. Methods: A total of 28 clinical isolates related to P. aeruginosa have been obtained from the burns specimens from patients attending to AL-Imam hospital/Baghdad-Iraq, through the period from October 2015 to March 2016. Also, all isolates have been recognized as P. aeruginosa via utilizing bacteriological assay and confirmed by Vitek 2. In addition, the susceptibility regarding P. aeruginosa isolates towards many antibiotics is identified detected. Results: it was found that the susceptibility regarding P. aeruginosa isolates towards ceftazidime and cefotaxime respectively is (75%) and (71.4%), while P. aeruginosa isolates’ susceptibility towards imipenem was (67.9%). Extended-spectrum β-lactamases producing Pseudomonas was (30 %) while metallo β-lactamases producing P. aeruginosa was (78.9 %) by double-disk synergy test, in general, the percentage of P. aeruginosa producing ESBL and MBL was (11.1%). Production of EXBLs and MBLs was determined to be plasmid-mediated that could be eliminated by using UV light as a curing agent. Conclusion: The importance of MBL and ESBL forming P. aeruginosa as evidence of increasing resistance to the antimicrobial agent; especially penicillins and cephalosporins as a drug of choice, also it was noticed that P. aeruginosa have the ability to produce MBLs more than ESBL; and these enzymes producing genes are harbored on a plasmid that can be affected by curing chemical agent
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreData of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreBackground: The main purpose of this study is to find if there is any correlation between the level of C-reactive protein (CRP) in gingival crevicular fluid with its serum level in chronic periodontitis patients and to explore the differences between them according to the probing depth. Materials and methods: Forty seven male subjects enrolled in this study. Thirty males with chronic periodontitis considered as study group whom further subdivided according to probing depth into subgroup 1 with pocket depth ≤6mm, subgroup 2 with pocket depth >6mm. The other 17 subjects considered as controls. For all subjects, clinical examination where done for periodontal parameters plaque index (PLI), gingival index (GI), bleeding on probing (BOP),
... Show More