Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of the user for user authentication. Back Propagation Neural Network (BPNN) and the Probabilistic Neural Network (PNN) are used as a classifier to discriminate between the authentic and impostor users. Furthermore, four keystroke dynamics features namely: Dwell Time (DT), Flight Time (FT), Up-Up Time (UUT), and a mixture of (DT) and (FT) are extracted to verify whether the users could be properly authenticated. Two datasets (keystroke-1) and (keystroke-2) are used to show the applicability of the proposed Keystroke dynamics user authentication system. The best results obtained with lowest false rates and highest accuracy when using UUT compared with DT and FT features and comparable to combination of DT and FT, because of UUT as one direct feature that implicitly contained the two other features DT, and FT; that lead to build a new feature from the previous two features making the last feature having more capability to discriminate the authentic users from the impostors. In addition, authentication with UUT alone instead of the combination of DT and FT reduce the complexity and computational time of the neural network when compared with combination of DT and FT features.
Long before the pandemic, labour force all over the world was facing the quest of incertitude, which is normal and inherent of the market, but the extent of this quest was shaped by the pace of acceleration of technological progress, which became exponential in the last ten years, from 2010 to 2020. Robotic process automation, work remote, computer science, electronic and communications, mechanical engineering, information technology digitalisation o public administration and so one are ones of the pillars of the future of work. Some authors even stated that without robotic process automation (RPA) included in technological processes, companies will not be able to sustain a competitive level on the market (Madakan et al, 2018). R
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
In the current study, different concentrations of miltefosine drug, which is the first effective and safe oral treatment for visceral leishmaniasis, was evaluated against L. donovani promastigotes in comparison with pentosam drug. Direct counting microscopic assay was used to find 50% inhibitory concentration (IC50) of miltefosine and pentostam against L. donovani promastigotes. The IC50 of miltefosine drug was 45.42μg/ml, 46.76μg/ml and 36.68μg/ml after 24 hr, 48hr and 72hr respectively, In comparison with IC 50 of pentostam drug was 75.39 μg/ml after 72hr. There were significant differences (P˂0.05) between IC50 values of miltefosine and pentostam drugs from first day to third day.
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreThis study investigates self-perception and self-branding on Instagram among young Arab women in the UAE, focusing on how they curate, negotiate and perform their digital identities and whether their digital self-presentation in any way compromises their sense of authenticity. The study is based on 11 interviews with young women in the UAE, between the ages of 20 and 30, in addition to online observation to follow the participants’ activities on Instagram. The study demonstrates that while social and digital media platforms may play a role in “empowering” Arab women, women tend to set their boundaries of authenticity shaped according to their audience’s expectations and their in-groups. This confirms the r
... Show MoreIn this paper is to introduce the concept of hyper AT-algebras is a generalization of AT-algebras and study a hyper structure AT-algebra and investigate some of its properties. “Also, hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-ideal of hyper AT-algebras hyper AT-algebra”. “We study homomorphism of hyper AT-algebras which are a common generalization of AT-algebras.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show More