Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy they got. Deep Learning (DL) and Machine Learning (ML) models were used to enhance text classification for Arabic language. Remarks for future work were concluded.
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe present study examines the main points of differences in the subject of greetings between the English language and the Arabic language. From the review of the related literature on greetings in both languages, it is found that Arabic greeting formulas are more elaborate than the English greetings, because of the differences in the social customs and the Arabic traditions and the Arabic culture. It is also found that Arabic greetings carry a religious meaning basing on the Islamic principle of “the same or more so”, which might lead to untranslatable loopholes when rendered in English.
Assimilation is defined ,by many phoneticians like Schane ,Roach ,and many others, as a phonological process when there is a change of one sound into another because of neighboring sounds.This study investigates the phoneme assimilation as a phonological process in English and Arabic and it is concerned specifically with the differences and similarities in both languages. Actually ,this study reflects the different terms which are used in Arabic to refer to this phenomenon and in this way it shows whether the term 'assimilation ' can have the same meaning of 'idgham' in Arabic or not . Besides, in Arabic , this phenomenon is discussed from&nb
... Show MoreVol. 6, Issue 1 (2025)
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac