The selection of proper field survey parameters of electrical resistivity can significantly provide efficient results within a reasonable time and cost. Four electrode arrays of 2D Electric Resistivity Imaging (ERI) surveys were applied to characterize and detect subsurface archaeological bodies and to determine the appropriate array type that should be applied in the field survey. This research is to identify the subsurface features of the Borsippa archaeological site, Babylon Governorate, Middle Iraq. Synthetic modeling studies were conducted to determine the proper array and parameters for imaging the shallow subsurface features or targets. The efficiency of many array types has been tested for the detection the buried archaeological artifacts by enhancing the data coverage and sensitivity with minimizing ambiguity, from the observations. The applied arrays are Wenner, Wenner-Schlumberger, Pole-Dipole, and Dipole-Dipole. The simulated synthetic model consists of five shallow artifacts or walls embedded in the proposed silt clayey soil deposits. The models were constructed using the RES2DMOD program, and the Inversion approach was conducted using the RES2DINV program. Data of subsurface resistivity variation were inverted using the robust (i.e., L1-norm) inversion algorithm. The results reflect that the Dipole-Dipole array is recommended for shallow depths investigations, while for greater depths, the Wenner-Schlumberger array is proper to apply. The concluded results were applied in real case studies, to effectively image archaeological bodies, and successfully detecting low resistivity zones at superficial and greater depths. The relatively high resistivity features have been imaged which is probably related to the archaeological features. The results of the investigation provide archaeologists with proper insights for assessing and excavating properly the surveyed part of the Borsippa and any archaeological sites in future work.
The topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
The laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.
Optical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
The aim of this study is to use style programming goal and technical programming goal fuzzy to study assessing need annual accurately and correctly depending on the data and information about the quantity the actual use of medicines and medical supplies in all hospitals and health institutions during a certain period where they were taking the company public for the marketing of medicines and medical supplies sample for research. Programming model was built goal to this problem, which included (15) variable decision, (19) constraint and two objectives:
1 - rational exchange of budget allocated for medicines and supplies.
2 - ensure that the needs of patients of medicines and supplies needed to improve
Job stress is considered one of the most important obstacles that may appear in the work field. In order to deal with the obstacles and challenges , the idea to deal with job stress has come to address job stress as one of the most important trends that enable organizations to face those challenges through focusing on the role of job stress and the organizational climate of the organization.
The research deals with two variables: the job stress as an independent variable, and the organizational climate as a dependent one. Each variable includes five sub-dimensions. These dimensions have been involved in an interaction to form
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show More