Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application
...Show More Authors
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MorePure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523
... Show MoreThe solar photocatalytic degradation of diuron, which is one of the herbicides, has been studied by a solar pilot plant in heterogeneous solar photocatalysis with titanium dioxide. The pilot plant was made up of compound parabolic collectors specially designed for solar photocatalytic applications. The influence of different variables such as, H2O2 initial concentration, TiO2 initial concentration, and diuron initial concentration with their relationship to the degradation efficiency were studied. Hydrogen peroxide (H2O2) found to increase the rate of diuron degradation. The best removal efficiency of heterogeneous solar photocatalytic TiO2 system was found to be 46.65 % and for heterogeneous solar photocatalytic TiO2/ H2O2 system was fo
... Show MoreA metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The
... Show MoreIn the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreA new way to Systems concentrates have been clarified and that allows a concentration high and analysis to automatically wavelengths of the spectrum of this system analyst of the spectrum and the center is built on Holucram Nafez gives less absorbency with efficient diffraction high when the wavelength (900 nm), which will be useful for Khallaya solar
In this work, an anti-reflection coating was prepared in the region (400-1000) nm of wavelength, with a double layer of silicon dioxide (SiO2) as an inner layer and the second layer of the mixture (SiO2) and titanium dioxide (TiO2) with certain ratios, as an outer layer using the chemical spraying method with a number of 6 sprays of layer SiO2 and 12 sprays of layer SiO2 - TiO2. Using the method of chemical spraying deposited on the glass as a substrate with a different number of sprays of SiO2, and a fixed number of TiO2-SiO2. The optical and structural properties were determined using UV-Vis spectroscopy and atomic force mi
... Show MoreTiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio