The new novel polymers nanocomposites based modified chitosan (CS) blending with polyvinyl alcohol (PVA) and coated gold or silver nanoparticles (AuNPs), AgNPs) were synthesized from many sequence reactions as presented in (Scheme1, 2 and 3). By utilizing 1H-NMR spectroscopy, FTIR, and Field Emission Scanning electron microscope , the synthesized compounds have been identified. Molecular docking is studied, where operations are used to predict the binding status of compounds with the enzyme and to calculate the free energy (ΔG) of the compounds prepared. Also, the antibacterial activity regarding the synthesized compounds against two resistant pathogenic bacteria (G+) S. aureus and E. coli (G-) was examined in vitro compare with standard antibiotic (Amoxicillin). The cytotoxic effect of novel polymers nanocomposites against Human Lung Adenocarcinoma Cells line (A549) using MTT assay was used to estimate and compare with normal cell line Rat Embryonic Fibroblasts (REF), the (modified chitosan/PVA/Au) exhibited very excellent inhibition rate. Finally, the Acute Toxicity Test of these nanocomposities were examined showed non-toxicity of these nanocomposities and histological examination of internal organs: liver, lung and kidney related to treated group showed no changes but similar those of control group.
Magnetic plaster kiln dust (MPKD) was synthesized as a unique, low-cost composite reused of byproduct plaster kiln dust (PKD), which is considered a source of air pollution. The FESEM, EDS, XRD, FTIR, VSM, and BET tests were used to characterize the MPKD. The characterization revealed that the MPKD was nanotubes non-agglomerated and super-paramagnetic with a high specific surface area (102.7 m2/g). Compared with the specific area of other materials (composites), the MPKD could be considered a promising substance in the field of water/wastewater treatment.
Background: The treatment of schizophrenia typically involves the use of olanzapine (OLZ), a typical antipsychotic drug that has poor oral bioavailability due to its low solubility and first-pass effect. Objective: To prepare and optimize OLZ as nanoparticles for transdermal delivery to avoid problems with oral administration. Methods: The nanoprecipitation technique was applied for the preparation of eight OLZ nanoparticles by using different polymers with various ratios. Nanoparticles were evaluated using different methods, including particle size, polydispersity index (PDI), entrapment efficiency (EE%), zeta potential and an in vitro release study. The morphology was evaluated by a field emission scanning electron microscope (F
... Show MoreThe microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreOndansetron HCl (OND) is a potent antiemetic drug used for control of nausea and vomiting associated with cancer chemotherapy. It exhibits only 60 – 70 % of oral bioavailability due to first pass metabolism and has a relative short half-life of 3-5 hours. Poor bioavailability not only leads to the frequent dosing but also shows very poor patient adherence. Hence, in the present study an approach has been made to develop OND nanoparticles using eudragit® RS100 and eudragit® RL100 polymer to control release of OND for transdermal delivery and to improve patient compliance.
Six formulas of OND nanoparticles were prepared using nanoprecipitation technique. The particles sizes and zeta potential were measured
... Show MoreSeries of new complexes of the type [M2 (L)Cl4 ] are prepared from the new ligand[N1 ,N4 -bis(benzo[d]thiazol-2- yl)succinamide (L) derived from ethan-1,2-dicarbonyl chloride and 2-aminobenzothiozole,where, M= Ni(ii), Cu(ii) and Zn(ii) alsocomplexes of mix-ligands, the type [M(L)(8-HQ)]Cl, where, M = Ni(ii), Cu(ii) and Zn(ii),8-HQ= 8-Hydroxyquinoline. Chemical forms are obtained from their 1 H, 13CNMR, Mass spectra (for (L)), FT-IR and U.V spectrum, melting point, molar conduct.Using flame (AA), % M is determined in the complexes.The content of C, H, N and S in the (L) and its complexes was specified. Magnetic susceptibility and thermal analysis (TGA) of prepared compounds were measured.The propose geometry for all complexes[M2 (L)Cl4 ] wa
... Show MoreSchiff base N,N'-Bis-(4-dimethylamino-benzylidene)-benzene-1,4-diamine has been synthesized from 4-dimethylaminobenzenaldehyde and benzene-1,4-diamine. The structure of Schiff base was obtained by (C.H.N.) microanalysis, Mass, 1HNMR, FT-IR and UV-Vis spectral methods and thermal analysis. Metal mixed ligand complexes of some metal(II) salts with Schiff base ligand and anthranilic acid were prepared in the molar ratio (1:2:2), (Metal):(SBL)2:(Anthra)2, (SBL)= Schiff base ligand, (Anthra) =anthranilic acid and Metal= Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The thermal behaviour (TGA) of the complexes was studied. The prepared complexes identified by using mass, thermal analysis, FT.IR and UV-Vis spectrum methods, on otherwise flame
... Show MoreAbstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observ
... Show More