Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreThe research aims to identify banking stress tests, which is one of the modern and important tools in managing banking risks by applying the equations of that tool to the sample. The banking sector considered one of the most vulnerable to sudden and rapid changes in an unstable economic environment, making it more vulnerable. Therefore, it is necessary to establish a special risk management section to reduce the banking risks of the banking business that negatively affect its performance.
The research concluded that there is a direct relationship between stress tests and risk management, as stress tests are an essential tool in risk management. They also considered a unified approach in managing bank risks that helps the bank to
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreDue to the rapid advancement of technology and the technology of things, modern industries start to need a highprecision equipment and surface finishing, so many finishing processes began to develop. One of the modern processes is Magnetic Abrasive Finishing (MAF), which is a high-precision process for internal and external finishing under the influence of a magnetic field of abrasive particles. Boron Carbide (B4C) ceramics was tested by mixing it with iron (Fe) and produced abrasive particles to reduce the intensity of scraping on the surface, reduce the economic cost and achieve a high finishing addition to remove the edges at the same time. The material selected for the samples was mild steel (ASTM E415) under (Quantity of Abrasives, Mac
... Show More