Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detection. In this paper, the use of modern learning machine-based approaches was explored. More than 70 state-of-the-art articles (from 2019 to 2024) were extensively explored to highlight the different machine learning and deep learning (DL) techniques of different models used for the detection, classification, and prediction of cancerous lung tumors. The efficient model of Tiny DL must be built to assist physicians who are working in rural medical centers for swift and rapid diagnosis of lung cancer. The combination of lightweight Convolutional Neural Networks and limited resources could produce a portable model with low computational cost that has the ability to substitute the skill and experience of doctors needed in urgent cases.
Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreBackground: This study aimed to determine the gender of a sample of Iraqi adults using the mesio-distal width of mandibular canines, inter-canine width and standard mandibular canine index, and to determine the percentage of dimorphism as an aid in forensic dentistry. Materials and methods: The sample included 200 sets of study models belong to 200 subjects (100 males and 100 females) with an age ranged between 17-23 years. The mesio-distal crown dimension was measured manually, from the contact points for the mandibular canines (both sides), in addition to the inter-canine width using digital vernier. Descriptive statistics were obtained for the measurements for both genders; paired sample t-test was used to evaluate the side difference of
... Show MoreWith 549,393 new cases recorded in 2018, bladder cancer is one of the most common malignancies worldwide. Urinary bladder cancer is the cause of about 3 percent of all new cancer diagnoses and 2.1 percent of all cancer deaths. This study aims to evaluate the efficiency of the N-myc downstream-regulated gene 1(NDRG1) as a biomarker for bladder cancer patients in the Iraqi population. One hundred individuals in the case-control study were enrolled and divided into two groups. The first group included 50 patients diagnosed with a bladder mass and investigated by undergoing cystoscopy examination for transurethral resection of bladder tumor (TURB). The second group included 50 healthy individuals who had normal bladder tissue. The resul
... Show MoreAbstract Background The aim of this study was to identify differences in oral cancer incidence among sexes, age groups and oral sites over time in Iraqi population. Methods Data was obtained from Iraqi cancer registry, differences and trends were assessed with the Wilcoxon matched-pairs signed-ranks test and Regression test, respectively. Results In Iraq from 2000 to 2008, there were 1787 new cases of oral cancer registered, 1035 in men and 752 in women. Cancer at all oral sites affected men more than women. The Tongue other (ICD-02) is the most frequent site follow by lip (ICD-00). Conclusion The decrease in the percent of oral cancer incidence in Iraq not compatible with the high percent of exposure to the risk factors, Iraqi cancer regis
... Show More