Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detection. In this paper, the use of modern learning machine-based approaches was explored. More than 70 state-of-the-art articles (from 2019 to 2024) were extensively explored to highlight the different machine learning and deep learning (DL) techniques of different models used for the detection, classification, and prediction of cancerous lung tumors. The efficient model of Tiny DL must be built to assist physicians who are working in rural medical centers for swift and rapid diagnosis of lung cancer. The combination of lightweight Convolutional Neural Networks and limited resources could produce a portable model with low computational cost that has the ability to substitute the skill and experience of doctors needed in urgent cases.
Abstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThis research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4- tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2)
... Show MoreSince cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin’s practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity,
... Show MoreBackground: Toxin-producing Shiga Escherichia coli has been identified as a new foodborne pathogen that poses a significant health risk to humans. Shiga toxin-producing Escherichia coli can be found in raw cow milk and its derivatives. A small number of Escherichia coli strains that produce shiga toxin are pathogenic. Aim of study: The study aimed to see if there were any virulence genes in 50 milk samples that were typical of Entero-haemorrhagic E. coli and evaluate the Myrtus communis effects on these bacteria. Materials and Method: Milk samples were used to isolate E. coli bacteria (n= 27), biochemically analyzed, and genetically screened for virulence genes using a multiplex (PCR). The hydro-alcoholic extraction of Myrtus communis leave
... Show MoreMen with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the differentiation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticles (MGF-AuNPs) and its