Dental implants are considered a unique treatment alternative for the replacement of missing dentition. There is a strive for materials which increase bone formation in bone implant interface and improve osseointegration to offer immediate loading directly after placement with decreased time. The aim of the study was to assess the effect of nano strontium substituted hydroxyapatite and nano fluorapatite mixture coating of screw shaped commercially pure titanium at the bone implant interface by torque removal test and histological assessment in rabbit tibia. Commercially pure titanium was used to prepare 80 screws that were divided into machined surfaces (CpTi), coated with (SrHA), coated with (FA) and coated with mixture 50%SrHA + 50%FA (mixed). The dip coating process was used for producing a homogenous coating layer. Biomechanical and histological assessments were completed after 2 and 6 weeks of implantation. The results revealed that the mean removal torque value for the mixed group were significantly greater when compared with CpTi group, SrHA group, and FA group after 2 and 6 weeks There was more new bone formation around the screws for the mixed group for both healing intervals. Mixing nano strontium substituted hydroxyapatite and nano fluorapatite was more effective in increasing torque mean values, in addition to higher bone formation after 2 and 6 weeks as a result of combined effect of strontium, fluoride in coating.
Titanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MoreBackground: The quantity and the quality of available bone, influence the clinical success of dental implants surgery. Cone beam Computed tomography is an established method for acquiring bone images before performing dental implant. Cone beam computed tomography is an essential tool for treatment planning and post-surgical procedure monitoring, by providing highly accurate 3-D images of the patient's anatomy from a single, low-radiation scan which yields high resolution images with favorable accuracy. The aim of study is the Measurement of alveolar bone (height and buccolingual width) and density in the mandible among Iraqi adult subject using CBCT for assessment of dental implant site dimensions. Material and method: The study sample in
... Show MoreRecently, dental implants have experienced increasing demand as one of the most effective, permanent and stable ways for replacing missing teeth. However, peri-implant diseases that are multispecies plaque-based infections may ultimately lead to implant failure (i.e., late peri-implantitis). Therefore, the present study aims to detect the microbial diversity of subgingival plaque in peri-implantitis cases (N = 30) by comparing with healthy implants (N = 34) using culture-based identification methods, including VITEK 2 system. An increase in microbial diversity (29 species along with 1 and 7 isolates, which were classified as a genus and unidentified species, respectively) were observed in subgingival sites of diseased implants dominated by
... Show MoreThe shoulder and hip joints though essentially both are ball and socket joints, show structural variability to serve functional needs.
This study aims at revealing some of the structural and functional properties of each of the two joints regarding the factors that contribute to the stability of any joint in the body, namely: bone, ligament, and muscle.
Jumping ability is a fundamental variable in many sports, as its execution requires an integration of muscular strength Q1 and certain biomechanical variables. This is particularly evident in gymnastics jumping events and jump shots in ball games, both of which rely on a high level of vertical resistance. Vertical resistance serves as an indicator of an athlete’s ability to overcome their body weight while counteracting gravitational force to achieve optimal performance. As such, it is considered one of the key factors in movements that demand explosive power and speed. The researchers believe that despite the significant relationship between vertical resistance, speed-strength of the arms and legs, and certain biomechanical varia
... Show MoreResearch has included preparation of three of n Vthal acids Amec Bmentoj high of interaction vehicles Ortometta and bar aminophenol with phthalic anhydride was withdrawn water and ring closure of acids Alvthal AMEC prepared
This study aimed to show the histological changes that 0ccured in Culex pipiens pipiens larvae and adults infected with Beauveria bassiana . The 4th instar larvae and adult mosquitoes were infected with B.bassiana in 10-4 spore/ml dilution, after 96 hours histological section was studied showing that the fungi infected all the body parts specially Cuticle , Epiderms, fat bodies and midgut. After 120 hours of exposure to the fungi the insect have a white appearance and covered with a thick coat of hyphea. Thus study shows biological control of B .bassiana on mosquitoes.
This work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show More