Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings, water bodies, and bare lands. During 2013-2022, vegetation cover increased from 63% in 2013 to 66% in 2022; buildings roughly increased by 1% to 3% yearly; water bodies showed a decrease of 2% to 1%; the amount of unoccupied land showed a decrease from 34% to 30%. Therefore, the classification accuracy was assessed using the approach of comparison with field data; the classification accuracy was about 85%.
The study aims to use the European Excellence Model (EFQM) in assessing the institutional performance of the National Center for Administrative Development and Information Technology in order to determine the gap between the actual reality of the performance of the Center and the standards adopted in the model, in order to know the extent to which the Center seeks to achieve excellence in performance to improve the level of services provided and the adoption of methods Modern and contemporary management in the evaluation of its institutional performance.
The problem of the study was the absence of an institutional performance evaluation system at the centre whereby weaknesses (areas of improvement) and st
... Show MoreIraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreThe present work involved a study the effect of cobalt(II) complex with formula [CoL(H2O)NO3] .4ETOH where L=Nitro [5-(P-nitro phenyl) -4-phenyl-1,2,4 traizole-3-dithiocarbamato hydrazide] aqua. (4) Ethanol and anti-cancer drug - cyclophosphamide on specific activity of two liver enzymes (GPT,ALP) by utilizing an in vivo system in female mice. On the enzymatic level an inhibition in the activity of GPT was noticed in different body organs such as liver, kidney and lung. The inhibition was noticed in both test and cyclophosphamide drug (cp). Mice were treated with three doses of cyclophosphamide (90,180, 250) ?g/ mouse for three days. The same doses were used for the cobalt (II) complex. The liver shows the highest rate of(GPT) inhibition co
... Show MoreThe aim of the research is to identify psychological toughness and its relationship to some coordination, physical abilities and accuracy of some basic performance skills among the players of the Iraqi junior national handball team players. The hypothesis is the existence of a correlation between psychological toughness, coordination, physical abilities, and the accuracy of some basic skills performance among the players of the Iraqi junior national handball team players. The descriptive approach in the style of correlational relations used to suit the research problem, as the community was determined by (18) players for the Iraqi junior national handball team players, while the sample was (14) players, and the samp
... Show MoreBackground: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreEarth’s climate changes rapidly due to the increases in human demands and rapid economic growth. These changes will affect the entire biosphere, mostly in negative ways. Predicting future changes will put us in a better position to minimize their catastrophic effects and to understand how humans can cope with the new changes beforehand. In this research, previous global climate data set observations from 1961-1990 have been used to predict the future climate change scenario for 2010-2039. The data were processed with Idrisi Andes software and the final Köppen-Geiger map was created with ArcGIS software. Based on Köppen climate classification, it was found that areas of Equator, Arid Steppes, and Snow will decrease by 3.9 %, 2.96%, an
... Show More