Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings, water bodies, and bare lands. During 2013-2022, vegetation cover increased from 63% in 2013 to 66% in 2022; buildings roughly increased by 1% to 3% yearly; water bodies showed a decrease of 2% to 1%; the amount of unoccupied land showed a decrease from 34% to 30%. Therefore, the classification accuracy was assessed using the approach of comparison with field data; the classification accuracy was about 85%.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MorePulsatile drug delivery systems are time-controlled dosage forms which are designed to release the active pharmaceutical ingredient after a predetermined lag time to synchronize the disease circadian rhythm. A migraine shows circadian rhythm with a marked increase in attacks between 6 a.m. and 8 a.m.
Sumatriptan is a selective agonist at serotonin (5-Hydroxy tryptamine1 (5-HT1))receptors, is an effective treatment for acute migraine attacks.
The aim of this work is to prepare time-controlled press-coated tablet with a lag time of 5.45 hrs.
Six formulas of fast dissolving core tablets and three formulas of press-coated tablets were prepared by using direct compression method using different variables to prepa
... Show MoreA mathematical model has been formulated to predict the influence of high outdoor air temperature on the performance of small scale air - conditioning system using R22 and alternative refrigerants R290, R407C, R410A. All refrigerants were investigated in the cooling mode operation. The mathematical model results have been validated with experimental data extracted from split type air conditioner of 2 TR capacity. This entailed the construction of an experimental test rig which consists of four main parts. They are, the refrigeration system, psychrometric test facility, measuring instrumentation, and auxiliary systems. The conditioned air was maintained at 25 0C dry bulb and 19 0C wet bulb for all tests. The outdoor ambient air temperatur
... Show MoreThe performance grading system (superpave) has provided means to incorporate binder characteristics with
pavement failure types. It’s a comprehensive system that relates climate, traffic conditions and aging with
critical pavement distress. The objective of this paper is to develop an improved asphalt binder grading
system for Iraq based on the principal of superpave. The country was divided into different zones according
to the highest and lowest temperature ranges and traffic loading. The Performance graded binder proposed
for each zone was compared with some States of USA that have same hot weather of Iraq by using Long
Term Pavement Performance (LTPP v3.1) software. Iraqi asphalt samples were tested using the Supe
Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreNowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe aim of this study was to identify the rate of return of the stock through the financial information disclosed by the financial statements of companies both services and insurance included in Iraqi market for securities . The study used a descriptive statistical methods and the correlation matrix for the independent factors , in addition to a regression model for data analysis and hypothesis . Model included a number of independent variables , which was measured in the size of company (sales or revenue) , and the leverage , in addition to the structure of assets and the book value of owners' equity in the company , as well as the general price index .Based on the data of (11)companies and for three years, showed the result
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.