To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreThe current study included a review of the registration and description of the Theretra alecto Boi, 1827 (Levant hawk moth), samples were collected from various areas of the Baghdad belt and the provinces of the Middle Euphrates, confirmation in the description was on the most important parts of the body included the head and it's appendages, pronotum, wings as well as male and female genitalia. The morphological characteristics under study were enhanced by illustrations and images. Information on the locations and date of the collection was also confirmed. This study aims to identify the most important characteristics of the diagnosis of the species and the review of appearance variations, especially the analytical style of wings, coupling
... Show MoreA newly developed analytical method was conducted for the determination of Ketotifen fumarate (KTF) in pharmaceuticals drugs via quenching of continuous fluorescence of 9(10H)-Acridone (ACD). The method was applied using flow injection system of a new homemade ISNAG fluorimeter with fluorescence measurements at ± 90◦ via 2×4 solar cell. The calibration graph was linear in the range of 1-45 mmol/L, with correlation coefficient r = 0.9762 and the limit of detection 29.785 µg/sample from the stepwise dilution for the minimum concentration in the linear dynamic ranged of the calibration graph. The method was successfully applied to the determination of Ketotifen fumarate in two different pharma
... Show MoreIn this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show More