To evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM–EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen values ranged between 14 and 18 in the remaining dentin and laser-ablated surfaces recorded the lowest reading (p < 0.001). The Ca:P ratios of the remaining dentin were close to sound dentin after all excavation methods; however, it was higher in the ultrasonic technique (p < 0.05). The bur-excavated dentin showed higher phosphate and lower matrix contents with higher tissue hardness that was comparable to sound dentin indicating the non-selectiveness of this technique in removing the potentially repairable dentin tissue. In contrast, the MI techniques exhibited lower phosphate and higher organic contents associated with lower microhardness in the deeper dentin layers. This was associated with smooth residual dentin without smearing and patent dentinal tubules. This study supports the efficiency of using MI methods in caries removal as conservative alternatives to rotary excavation, providing a promising strategy for the clinical dental practice.
Due to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreActivated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
... Show More
Background: Polycystic ovary syndrome is a heterogeneous disorder and its etiology appears to be complex and multifactorial; characterized by hyperandrogenism, chronic anovulation and infertility. It’s associated with evidence of low-grade chronic inflammation, as indicated by the presence of elevated levels of high sensitive C- reactive protein levels, interleukin-6 and tumor necrosis factor-α. The source of excess circulating tumor necrosis factor-α in obese Polycystic ovary syndrome patient is likely to be the adipose tissues while in lean women increased visceral adiposity has been proposed as a source of excess tumor necrosis factor-α.Objectives: to evaluate the levels of high sensitive C- reactive protein, tumor necrosis facto
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
