Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreThe research problem focused through the researcher's experience in the gymnastics game and the lack of use of educational models that give the student an important role in the educational process, so it became necessary to identify the type of prevailing style for students, and the need for diversity in the use of educational models based on scientific theories, including the Daniel Document model. Based on three theories of learning, which are structural, behavioral, and meaningful learning. The research aimed to identify the effect of using the Daniel model for people with two types of brain control (left and right) to learn the skill of the Cartwheel in artistic gymnastics for students of the second stage. The researcher used the experi
... Show Moreيسعى المجتمع من خلال الوحدات الإقتصادية إلى الوصول إلى تحقيق أفضل الإنجازات التي لا تتمثل بالسلع والخدمات حسب وإنما بما يتحقق من مردود لكافة الاطراف المعنية بالوحدات الإقتصادية على ان لايتم ذلك على حساب قيم المجتمع وأخلاقياته وآدابه العامة. وعليه تصبح الوحدات الإقتصادية مسرحاً لصراعات قوى متعددة كل منها له قيمه الأخلاقية سواء كان فرداً أومجموعة افراد أو وحدة إقتصادية أو أي جهة أُخرى، وبحكم مسؤولياته
... Show MorePresupposition is the background belief that is known by both the speaker and the addressee, it is tied to particular words and aspects of the surface structure that act as linguistic triggers. The present study aims at investigating whether Iraqi fourth -year university students are able to recognize the English presuppositions through the meaning of these linguistic triggers .To fulfil the basic requirements of the study, the researcher has conducted a test . The results of the study have validated the hypothesis of the work and it is found that the linguistic triggers are important tools in recognizing presuppositions.
Today, dimethyl ether (DME) is changing to ordinarily worn as a superb aerosol propellant and refrigerant for its eco-friendly characteristics. Lately, with the development of novel chemical energy in the coal industries, it has become a fascinating field of research as an alternative green fuel for diesel machines due to the high cetane number. The DME synthesis processes include catalytic dehydrating methanol in an adiabatic fixed-bed reactor. In this study, to investigate the chemical conditions of the methanol dehydration reaction, CFD simulations of the adiabatic reactor have been assessed. The advantage of the work is a sensitivity analysis was run to find the effect of pressure, kinetics, and velocity on the reactor performan
... Show More