Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
the study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a
... Show MoreImage fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreA novel welded demountable shear connector for sustainable steel-concrete composite structures is proposed. The proposed connector consists of a grout-filled steel tube bolted to a compatible partially threaded stud, which is welded on a steel section. This connector allows for an easy deconstruction at the end of the service life of a building, promoting the reuse of both the concrete slabs and the steel sections. This paper presents the experimental evaluation of the structural behavior of the proposed connector using a horizontal pushout test arrangement. The effects of various parameters, including the tube thickness, the presence of grout infill, and the concrete slab compressive strength, were assessed. A nonlinear finite element mode
... Show MoreThe present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side.
A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations:
Z=Z0 +C.R.T/9.8(d2/D2+1) [Exp. [-9.8(d
the traumatic memory of their ancestors. The novel navigates sites of trauma, memory, and blues music while resisting the bourgeoisie-capitalist relationships that permeated not only white society but also African American communities. Jones’s novel presents the plight of an African American woman, Ursa, caught between the memory of her enslaved foremothers and her life in an emancipated world. The physical and spiritual exploitation of African American women who bear witness to the history of slavery in Corregidora materializes black women’s individuality. This article is framed by trauma studies as well as the Marxists’ concepts of commodification, accumulation, and production. Ursa, one of the Corregidora women, represents
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThis study deals with the subject of art criticism by using Erwin Panofsky's theory to analyze a few Saudi artists' works. The study aims to identify Panofsky's theory and provide criticism of some Saudi artworks using it. The importance of the study is that it enriches the field of art criticism in the Kingdom of Saudi Arabia and helps critics and artists in using Panofsky’s theory to analyze artworks.
The study sample consists of six artworks produced in 2021 by six contemporary Saudi artists. In the theoretical section, the study dealt with several topics; first, is art criticism, the second part presents Panofsky’s theory with its three stages, the final part deals with the beginning of Saudi art until present time and its