A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of the system is investigated with the use of the Lyapunov method. An application to the Sotomoyar theorem of local bifurcation is performed around the equilibrium points. In the end, the system is numerically simulated to confirm our obtained analytical results and specify the control set of parameters. Bifurcation diagrams are used to show the dynamical behavior as a function of some parameters. It is obtained that the prey’s fear stabilizes the system, while the disease and harvest cause extinction in one or more species.
A mathematical model was proposed to study the microkinetics of esterification reaction of oleic acid with ethanol over prepared HY zeolite catalyst. The catalyst was prepared from Iraqi kaolin source and its properties were characterized by different techniques. The esterification was done under different temperature (40 to 70˚C) with 6:1 for molar ratio of ethanol to oleic acid and 5 % catalyst loading. The microkinetics study was done over two period of time each period was examined individually to calculate the reaction rate constant and activation energy. The impact of the mass transfer resistance to the reactant was also investigated; two different studies have been accomplished to do this purpose. The e
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreThe composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
Newly series of 6,6’-((2-(Aryl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(2-methoxy phenol) (3a-i) were synthesized from cyclization of 6,6’-((propane-1,3-diylbis (azanediyl)) bis(methylene)) bis(2-methoxyphenol) with several aryl aldehyde in the presence of acetic acid. The newly compounds characterized from their IR, NMR and EIMs spectra. The antioxidant capacity of these compounds screened by utilizing DPPH and FRAP assays. Compounds 3g and 3i exhibited significant antioxidant capability in both assays. Docking study for these compounds as a potential inhibitors of gyrase enzyme were carried out. Compound 3g exhibited significant inhibition with binding free energies (DG) higher than novobiocin. compounds 2, 3a, 3b, 3
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show More