The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. Therefore, this work is focused function approximation-based control algorithms considering centralized and decentralized approaches. In this work, the following control algorithms are designed: (1) Adaptive hybrid regressor-approximation control. This work attempts to combine the features of both the regressor and the approximation techniques in adaptive control. The regressor technique is a powerful tool for adaptive control of the known structure of modeling while the approximation is useful for estimation of time-varying uncertainty. Therefore, this work proposes adaptive hybrid regressor and approximation control for robots in both free and constrained spaces. The control law consists of three terms: (i) regressor term for initial estimation of the known structure of the robot dynamics, e.g. inertia matrix, Coriolis and centripetal matrix and gravity vector, and (ii) approximation term for estimation of internal and external disturbances resulted from the inexact calculation of regressor matrix and unknown modeling of friction, etc, and (iii) robust term consists of switching sgn(.) function. The control law is designed based on updating the uncertain parameters and the weighting coefficients corresponding to regressor and approximation respectively with position/force tracking purposes. The proposed controller is stable in the sense of Lyapunov stability. (2) Decentralized adaptive partitioned approximation control. Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design feedforward control with improved tracking accuracy. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Simulation experiments on 2-link robot and 6-link biped robot are performed to prove the effectiveness of the proposed algorithms.
Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreA steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
The high mobility group A1 gene (HMGA1) rs139876191 variant has been related to metabolic syndrome and type 2 diabetes, but data are lacking in Middle Eastern populations. The study aimed to assess whether the HMGA1 rs139876191 variant is associated with metabolic syndrome risk and whether this variant predicts the risk of insulin resistance. This case-control study was carried out at single center in Kirkuk city/ Iraq from February to August 2022. Polymorphisms in HMGA1 and genotyping were identified by Sanger sequencing of genomic DNA obtained from 91 Iraqi participants (61 patients with metabolic syndrome and 30 control). Lipid profile, serum (glucose and insulin), glycated hemoglobin, blood pressure, body mass index, and waist circumfer
... Show MoreThis study focused on determining the markers of Macrophage migration inhibitor (MIF), as well as the N-telopeptides of type I bone collagen (NTX), and some other parameters (alkaline phosphatase (ALP), vitamin D (Vit D), calcium (Ca), phosphorus (P), and magnesium (Mg), and their correlation with other parameters in osteoporosis. One hundred ten subjects were involved in the current study. There were two groups of patients: group I (30) women with severe osteoporosis and group II (30) women with mild osteoporosis. For comparison, 50 apparently healthy individuals were included as a control. Serum levels of MIF, and NTX were significantly higher in groups I and II as compared to the control group, which indicate that these two parameters
... Show MoreThe expanding use of multi-processor supercomputers has made a significant impact on the speed and size of many problems. The adaptation of standard Message Passing Interface protocol (MPI) has enabled programmers to write portable and efficient codes across a wide variety of parallel architectures. Sorting is one of the most common operations performed by a computer. Because sorted data are easier to manipulate than randomly ordered data, many algorithms require sorted data. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. In this paper, sequential sorting algorithms, the parallel implementation of man
... Show MoreThe aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreThe grasping stability of robotic manipulators is crucial to enable autonomous manipulation in an environment where robots are facing obstacles in their route, where abrupt changes in the robot’s speed are induced. These speed variations will produce forces affecting the robotic manipulator, hence its grasping stability. In this research, the grasping stability of a robotic manipulator that functions according to a frictional self-locking mechanism is investigated statically and dynamically. Both theoretical and experimental results showed that the grasped object size, weight, and its orientation inside the gripper have a great effect on grasping stability. Both the theoretical and experimental results indicated that the grasping object p
... Show MoreObjective: To identify causes of maternal death in Mizan Aman and Gebretsadik shawo general hospitals
Methodology: A case control study on 595 charts, 119 cases and 476 controls was conducted in Mizan
Aman & Gebretsadik shawo general hospitals. Data was analyzed by STATA 13.1. Propensity score
matching analysis was used to see causes of maternal death.
Results: Hemorrhage were the main direct causes of maternal death which accounts 47.9% (β =0.58
(95% CI (0.28,0.87)) in hospital but when projected to population based the sample (β =0.26 (95% CI
(0.22,0.31)). Followed by infection 36 (25.21%) (β = 0.50 (95% CI (0.08, 0.92)). when projected to
population based the sample PIH 7.6%) is significant cause (β = 0.16