Preferred Language
Articles
/
3BaXAowBVTCNdQwCxfVm
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Dec 24 2020
Journal Name
Psychology And Education
The Use of Ergative Verbs to Background the Role of the Agent in two Selected Short Stories: A Syntactico-Semantic Study
...Show More Authors

The study explores the use of ergative verbs in constructing clauses and their impact on the backgrounding of the agent's role in two selected short stories. Contrary to hypothesis No. 1, the research indicates that changes in sentence patterns don't affect the meaning of the process. Additionally, hypothesis No. 2 is refuted as the middle structure is found to highlight the agent's role in the science fiction short story, Terra Infirmum, rather than concealing it as hypothesized for "The Invisible Man." The analysis uncovers that writers utilize ergative processes to narrate stories in various ways, including transitive/active voice, intransitive/active voice, and transitive/passive voice. Furthermore, the findings suggest that writers emp

... Show More
View Publication
Publication Date
Sun Apr 23 2017
Journal Name
International Conference Of Reliable Information And Communication Technology
Classification of Arabic Writer Based on Clustering Techniques
...Show More Authors

Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio

... Show More
Scopus (6)
Scopus
Publication Date
Sun Oct 30 2022
Journal Name
Egyptian Journal Of Hospital Medicine
Antibiofilm Activity of Conocarpus erectus Leaves Extract and Assessment Its Effect on pelA and algD Genes on Multi-drug Resistant Pseudomonas aeruginosa
...Show More Authors

Due to its various resistance mechanisms, Pseudomonas aeruginosa is the most prevalent opportunistic infection that kills hospitalized patients. Thus, therapeutic options become limited. Objective: The study aimed to estimate the antibiofilm effectiveness of Conocarpus erectus leaf extracts against MDR P. aeruginosa isolates and examines pelA and algD gene expression. Subjects and Methods: One hundred-fifty clinical samples were collected from five Baghdad hospitals between September 2021 and January 2022. Samples were grown on different mediums. Despite cetrimide agar's ability to detect P. aeruginosa, only 83 isolates developed at 42°C. VITEK 2 compact system identification followed. This study examined 83 of P. aeruginosa isolates for r

... Show More
View Publication
Scopus (2)
Scopus
Publication Date
Fri Apr 16 2021
Journal Name
Turkish Journal Of Computer And Mathematics Education
Effective reading skills and their relationship to deep understanding of chemistry among middle school students in Iraq
...Show More Authors

Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Innovation, Management And Technology
Intelligent Magneto-Rheological Fluid Directional Control Valve
...Show More Authors

There are many configurations of directional control valve. Directional control valve has complex construction, such as moving spool to control the direction of actuator and desired speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper presents the design of multi configuration MR directional control valve. The construction and the principle of work of the valve are presented. The experiment was conducted to show the working principle of the valve functionally. The valve worked proportionally to control the direction and speed of hydra

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Mar 02 2021
Journal Name
Turkish Journal Of Computer And Mathematics Education
Deep understanding skills and their relationship to mathematical modelling among fifth grader
...Show More Authors

Abstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Greening Existing Buildings in Contemporary Iraqi Urban Reality/ Virtual Model
...Show More Authors

The approach of greening existing buildings, is an urgent necessity, because the greening operation provides the speed and optimal efficiency in the environmental performance, as well as keeping up with the global green architecture revolution. Therefore, greening existing buildings in Iraq is important for trends towards renewable energies, because of what the country went through economic conditions and crises and wars which kept the country away from what took place globally in this issue. The research problem is: insufficient knowledge about the importance and the mechanism of the greening of existing buildings, including its environmental and economic dimensions, by rationalization of energy consumption and preservi

... Show More
View Publication Preview PDF