The development of efficient and environmentally friendly catalysts for the electro-oxidation of hydrazine derivatives is of great importance in various industrial applications. In this study, we report the utilization of graphitebased catalysts for the electro-oxidation of hydrazine derivatives, using sodium chloride as a green and sustainable chemical approach. Graphite, a two-dimensional carbon material with exceptional properties, offers numerous advantages as a catalyst, including its high surface area, excellent electrical conductivity, and chemical stability. These characteristics make graphite an ideal candidate for promoting electrochemical reactions. Sodium chloride (NaCl), a readily available and cost-effective salt, serves as a green alternative to traditional oxidants used in hydrazine oxidation processes. By replacing conventional oxidizing agents with NaCl, we aim to reduce the environmental impact associated with the production and disposal of hazardous chemicals. This process enables the transformation of the HN-NH bond within hydrazines, leading to the formation of azo compounds (N¼N). Azo compounds are important organic molecules with diverse applications in organic synthesis. This novel approach has successfully showcased the efficacy of utilizing various azo compounds in 13 different examples, yielding excellent or moderate to good results. The method capitalizes on electricity as the final oxidizing agent, providing an environmentally friendly oxidation strategy. Its high efficiency and gentle reaction conditions make this technique valuable for synthesizing azo derivatives, even when working with hydrazines containing diverse functional groups, resulting in yields ranging from moderate to excellent. Through systematic experiments, we evaluated the catalytic performance of graphite-based catalysts in the electro-oxidation of hydrazine derivatives. The catalysts demonstrated remarkable catalytic activity due to their efficient conversion of hydrazine derivatives into desired products. Moreover, the system exhibited good stability and recyclability, suggesting its suitability for practical applications.
The goal of this study was to investigate the protein peroxidation role by measuring serum levels of advanced oxidation protein products (AOPP) in type 2 diabetic patients with or without retinopathy and comparing them to controls to see if circulating AOPP levels can be used as a detection biomarker for DR. And see which of the two widely used antidiabetic treatment groups had the most impact on this oxidative stress marker. The groups were divided into two subgroups: 1) 70 type 2 diabetic patients (36 male, 34 female), 35 with diabetic retinopathy (DR) and 35 with no evidence of DR, and 2) non-diabetic controls (11 male, 9 female) were chosen from Ibn AL-Haitham Hospital for Ophthalmology and a Specialized Center for Endocrinology and Dia
... Show MoreFluorescent proteins (FPs) have revolutionised the life sciences, but the chromophore maturation mechanism is still not fully understood. Here we photochemically trap maturation at a crucial stage and structurally characterise the intermediate.
Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreSeeds of five cultivars of oats (Avena sativa) were introduced from Italy in 2009. Seeds were propagated on the farm of the Dept. of Field Crops Sci. / Coll. of Agric. / Univ. of Baghdad in the season 2009 – 2010. The cultivars Anatolia, Alguda, Hamel, Pimula and Genzania were planted under 3 irrigation intervals; 3, 4 and 5 weeks to give water depth of 480, 400 and 320 mm, respectively . The depth of water was 80 mm each irrigation. A factorial experiment with RCBD of 4 replicates was conducted in 2 consecutive seasons in 2010 – 2011 and 2011 – 2012. The cultivar Alguda gave highest grain yield (8.07 t/ ha) under 480 mm, and 7.02 t / ha average of 3 water depths. This cultivar was characterized by high growth rate (13.2 g/m2/ d) that
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreReaction of,2- [( 4- amio phenyl ) diazenyl] 1,3,4- thiadiazole -5- thiol (S1) with p- chlorobenzeldehyde,3,4 – dimethoxy benzaldehyde and pyrrol-2- carbonxaldehyde gave -5- [{4-(4-chlorobenzylidene amino) phenyl} diezenyl]-1,3,4- thiadiazole-2- thiol (S2),5-[{ 4-[(3,4- dimethoxybenzyldene )amino phenyl ] diazenyl)-1,3,4- thiadiazole-2-thiol,(S3) and -5- [4-(1,H – pyrrol -2- yl- methylene)amino phenyl] diazenyl)-1,3,4- thiadiazole-2- thiol (S4) respectively as schiff's bases compounds. On the same route-2-[(4-amino-1- naphthyl ) diazenyl] -1,3,4- thiadiazole -5- thiol (S5) reacts with –p- chloro benzaldehyde and –m- nitrobenzaldehyde to give the follwing schiff's bases -5-[{ 4-(4- chloro benzylidene ) amino -1- naphthyl} diazenyl]
... Show MoreIn this work, N-hydroxy phthalimide derivatives (NHPID) were synthesized from the nucleuphilic substitution reactions of (NHPI) with different halides (alkyl halides, sulfonyl halides, benzoyl halides and benzyl halides). The products were distinguished using FTIR spectrum and Nuclear magnetic resonsnce (1H-NMR and 13CNMR), in addition to other characteristic methods such as sodium fution for sulfur determination. followed by measuring antibacterial (with different types of gram positive/gram negative bacteria) and antifungal activities of these compounds.
In this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.