The development of efficient and environmentally friendly catalysts for the electro-oxidation of hydrazine derivatives is of great importance in various industrial applications. In this study, we report the utilization of graphitebased catalysts for the electro-oxidation of hydrazine derivatives, using sodium chloride as a green and sustainable chemical approach. Graphite, a two-dimensional carbon material with exceptional properties, offers numerous advantages as a catalyst, including its high surface area, excellent electrical conductivity, and chemical stability. These characteristics make graphite an ideal candidate for promoting electrochemical reactions. Sodium chloride (NaCl), a readily available and cost-effective salt, serves as a green alternative to traditional oxidants used in hydrazine oxidation processes. By replacing conventional oxidizing agents with NaCl, we aim to reduce the environmental impact associated with the production and disposal of hazardous chemicals. This process enables the transformation of the HN-NH bond within hydrazines, leading to the formation of azo compounds (N¼N). Azo compounds are important organic molecules with diverse applications in organic synthesis. This novel approach has successfully showcased the efficacy of utilizing various azo compounds in 13 different examples, yielding excellent or moderate to good results. The method capitalizes on electricity as the final oxidizing agent, providing an environmentally friendly oxidation strategy. Its high efficiency and gentle reaction conditions make this technique valuable for synthesizing azo derivatives, even when working with hydrazines containing diverse functional groups, resulting in yields ranging from moderate to excellent. Through systematic experiments, we evaluated the catalytic performance of graphite-based catalysts in the electro-oxidation of hydrazine derivatives. The catalysts demonstrated remarkable catalytic activity due to their efficient conversion of hydrazine derivatives into desired products. Moreover, the system exhibited good stability and recyclability, suggesting its suitability for practical applications.
This study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MorePolycaprolactone polymer is widely used in medical applications due to its biocompatibility. Electro spinning was used to create poly (ε- caprolactone) (PCL) nanocomposite fiber mats containing hydroxyapatite (HA) at concentrations ranging from 0.05 to 0.4% wt. The chemical properties of the fabricated bio composite fibers were evaluated using FTIR and morphologically using field-emission scanning-electron microscopy (FESEM), Porosity, contact angle, as well as mechanical testing(Young Modulus and Tensile strength) of the nanofibers were also studied. The FTIR results showed that all the bonds appeared for the pure PCL fiber and the PCL/HA nano fibers. The FESEM nano fiber showed that the fiber diameter increased from 54.13 to 155.79 (n
... Show MoreAbstract
The issue of the protection of the environment is a shared responsibility between several destinations and sectors, and constitutes a main subject in which they can achieve sustainable development. In the sectors of government programs can be set up towards the establishment of the government sector to the green environment, so to be the implementati
... Show MoreBackground: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 hours in DDW. Ten sample of each material were subjected to
... Show MoreFour electrodes were synthesized based on molecularly imprinted polymers (MIPs). Two MIPs were prepared by using the diclofenac sodium (DFS) as the template, 2-hydroxy ethyl metha acrylate(2-HEMA) and 2-vinyl pyridine(2-VP) as monomers as well as divinyl benzene and benzoyl peroxide as cross linker and initiator respectively. The same composition used for prepared non-imprinted polymers (NIPs) but without the template (diclofenac sodium). To prepared the membranes electrodes used different plasticizers in PVC matrix such as: tris(2-ethyl hexyl) phosphate (TEHP), tri butyl phosphate (TBP), bis(2-ethyl hexyl) adipate (BEHA) and tritolyl phosphate (TTP). The characteristics studied the slop, detection limit, life time and linearity range of DF
... Show MoreThis work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreIn this study, the aqueous extract of (Typha domingensis Pers.) pollen grain (qurraid) to know its ability to manufacture silver nanoparticles. Qurraid is a semi-solid yellow food substance, sold in Basra markets and eaten by the local population. It is made from the pollen of the T. domingensis Pers. plant after being pressed and treated with water vapor. The Gas chromatography–mass spectrometry (GC-MS) reaction was done to identify the active compounds of qurraid aqueous extract. The ability of the aqueous extract of qurraid to manufacture silver nanoparticles was tested, and the construction of silver nanoparticles was inferred by the reaction mixture's color, which ranged from yellow to dark brown. The synthesi
... Show MoreThick films of poly(vinyl chloride)(PVC)& PVC doped with Zn(etx)2 salt complex have been prepared by cast method with fixed thickness almost (120±5) Microns. Optical studies were carried out in the wavelengths region(200-900)nm based on absorption & transmition measurement. Optical parameters such as absorption coefficient(?) ,refraction index(n) and extinction coefficient(K) were observed to be effected by adding the dopant.Electrical parameters such as real(?)& imaginary(?) part of dielectric constant were also calculated part of dielectric constant were also calculated from the optical parameters using Maxwell equation.
Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most
... Show More