Preferred Language
Articles
/
2xeAd48BVTCNdQwCT3j4
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN model are identified as the ferritin and a gender variable. The higher results precision was attained by the multilayer perceptron (MLP) networks when we applied the explanatory variables as the inputs with one hidden layer, which covers 3 neurons, as the planned many hidden layers are with one output of the fitting NN model which is use in stages of training and validation beside the actual data. We used a portion of the actual data to verify the behaviour of the developed models, we find that only one observation is false prediction value. This mean that the estimation model has significant parameters to forecast the type of Covid cases (Covid or no Covid) .

Scopus
Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Development of Intelligent Control Strategy for an Anesthesia System Based on Radial Basis Function Neural Network Like PID Controller
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Rehabend
Prediction of impact force-time history in sandy soils
...Show More Authors

Scopus
Publication Date
Mon Mar 09 2020
Journal Name
Agrosystems, Geosciences & Environment
In-season potato yield prediction with active optical sensors
...Show More Authors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve

... Show More
View Publication
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Channel Estimation and Prediction Based Adaptive Wireless Communication Systems
...Show More Authors

Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath  propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.

In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Electrical And Electronics Engineering
HF Wave Propagation Prediction Based On Passive Oblique Ionosonde
...Show More Authors

High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Regression shrinkage and selection variables via an adaptive elastic net model
...Show More Authors
Abstract<p>In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in </p> ... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Tue Sep 30 2025
Journal Name
Journal Of The College Of Basic Education
Fuzzy Nonparametric Regression Model Estimation Based on some Smoothing Techniques With Practical Application
...Show More Authors

In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .

View Publication Preview PDF