The crystal structures of a new polymorph and seven new derivatives of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine have been characterized and examined along with three structures from the literature to identify trends in their intermolecular contact patterns and packing arrangements in order to develop an insight into the crystallization behaviour of this class of compound. Seven unique C-H...X contacts were identified in the structures and three of these are present in four or more structures, indicating that these are reliable supramolecular synthons. Analysis of the packing arrangements of the molecules using XPac identified two closely related supramolecular constructs that are present in eight of the 11 structures; in all cases, the structures feature at least one of the three most common intermolecular contacts, suggesting a clear relationship between the intermolecular contacts and the packing arrangements of the structures. Both the intermolecular contacts and packing arrangements appear to be remarkably consistent between structures featuring different functional groups, with the expected exception of the carboxylic acid derivative 4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl) benzoic acid (L11), where the introduction of a strong hydrogen-bonding group results in a markedly different supramolecular structure being adopted. The occurrence of these structural features has been compared with the packing efficiency of the structures and their melting points in order to assess the relative favourability of the supramolecular structural features in stabilizing the crystal structures.
background: human epidermal growth factor receptor-2 (her2/neu) is related to growth factor receptors with alkaline kinase activity and it is regarded as important prognostic and therapeutic factor that can depended on in breast cancer therapy. HER2/neu expression by immunohistochemistry (IHC) is submitted to a great in terob server inconsistency. Subsequently additional confirmatory tests for assessment of gene alterations and amplification status are needed for patients with early or metastatic breast cancer. In situ hybridization techniques and specifically Chromogenic in situ hybridization (CISH) was arise as a practical, cost-effective, and alternative to fluorescent in situ hybridization in testing for gene alterationAims of the study
... Show MoreCOVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduce
... Show MoreLow conversion copolymerization of N-vinyl-2-pyrrolidon M.W = (111.14) VP (monomer-1) has been conducted with acrylic acid AA and methymethacrylate MMA in ethanol at 70ºC , using Benzoyl peroxide BPO as initiator . The copolymer composition has been determined by elemental analysis. The monomer reactivity ratios have been calculated by the Kelen-Tudos and Finman-Ross graphical procedures . The derived reactivity ratios (r1 , r2 ) are : (0.51 , 4.85) for (VP / AA ) systems and (0.34 , 7.58) for (VP , MMA) systems , and found the reactivity ratios of the monomer AA , MMA is mor than the monomer VP in the copolymerization of (VP / AA) and (VP /MMA) systems respectly . The reactivity ratios values were used for microstructures calculation.
Twelve N-(6-sustirured benzothanol-2-y1) succinamic acids and 3-(6-substitted benzonathol-2-y1)-carbamoyl propionyl chloride were synthesized in good yields from reaction of benzonathol2-yl)
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
CdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.