يقترح هذا البحث طريقة جديدة لتقدير دالة كثافة الرابطة باستخدام تحليل المويجات كطريقة لامعلمية، من أجل الحصول على نتائج أكثر دقة وخالية من مشكلة تاثيرات الحدود التي تعاني منها طرائق التقدير اللامعلمية. اذ تعد طريقة المويجات طريقة اوتماتيكية للتعامل مع تاثيرات الحدود وذلك لانها لا تأخذ بنظر الاعتبار إذا كانت السلسلة الزمنية مستقرة او غير مستقرة. ولتقدير دالة كثافة الرابطة تم استعمال المحاكاة لتوليد البيانات وباستعمال خمسة دوال رابطة مختلفة مثل Gaussian وFrank وTawn وRotation Tawn وJoe وبخمسة أحجام مختلفة للعينات عند ثلاثة مستويات ارتباط موجبة، واعتمادًا على الحلول المتعددة، أظهرت النتائج أن تقدير دالة الكثافة الرابطة بطريقة المويجات عندما يكون مستوى الارتباط كانت الرابطة Gaussian في المرتبة الأولى تليها الرابطةFrank واحتلت الرابطة Joe المرتبة الأخيرة. اما في حالة الارتباطات المتوسطة والضعيفة كانت الرابطة Tawn في المرتبة الأولى تليها الرابطة Rotation Tawn في حين جاءت Gaussian بالمرتبة الأخيرة. بالاعتماد على المعايير (Root Mean Square Error, Akiake Information Criteria, and Logarithm likelihood criteria) ، وتبين من خلال الرسم (Contour plot) والشكل ثلاثي الابعاد (3D plot) لدوال الرابطة الحقيقية. فضلا عن اشكال التمهيد لكل منها باستخدام طريقة (ECDWT)، ويتضح من خلال الاشكال الدائرية ان توزيع مشاهدات الدالة الرابطة المقدرة بطريقة (ECDWT) كان دقيقا عند الاطراف بينما كان اقل دقة عند المركز لكل من الدوال Gaussian وTawn.
In this research, we present a nonparametric approach for the estimation of a copula density using different kernel density methods. Different functions were used: Gaussian, Gumbel, Clayton, and Frank copula, and through various simulation experiments we generated the standard bivariate normal distribution at samples sizes (50, 100, 250 and 500), in both high and low dependency. Different kernel methods were used to estimate the probability density function of the copula with marginal of this bivariate distribution: Mirror – Reflection (MR), Beta Kernel (BK) and transformation kernel (KD) method, then a comparison was carried out between the three methods with all the experiments using the integrated mean squared error. Furthermore, some
... Show MoreCopula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show MoreThis study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe current research creates an overall relative analysis concerning the estimation of Meixner process parameters via the wavelet packet transform. Of noteworthy presentation relevance, it compares the moment method and the wavelet packet estimator for the four parameters of the Meixner process. In this paper, the research focuses on finding the best threshold value using the square root log and modified square root log methods with the wavelet packets in the presence of noise to enhance the efficiency and effectiveness of the denoising process for the financial asset market signal. In this regard, a simulation study compares the performance of moment estimation and wavelet packets for different sample sizes. The results show that wavelet p
... Show MoreIn this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s
FG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2
The Field Programmable Gate Array (FPGA) approach is the most recent category, which takes the place in the implementation of most of the Digital Signal Processing (DSP) applications. It had proved the capability to handle such problems and supports all the necessary needs like scalability, speed, size, cost, and efficiency.
In this paper a new proposed circuit design is implemented for the evaluation of the coefficients of the two-dimensional Wavelet Transform (WT) and Wavelet Packet Transform (WPT) using FPGA is provided.
In this implementation the evaluations of the WT & WPT coefficients are depending upon filter tree decomposition using the 2-D discrete convolution algorithm. This implementation w
... Show MoreEmbedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.