This study has three parts, the first one is the synthesis of a novel Schiff bases by the condensation of guanine or 9-[{2-hydroxyethoxy}methyl]-9H-guanine with variety aldehydes to yield four different bases as follows: (E)-2-((4-nitrobenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S1), (E)-2-((4-methoxybenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S2), (E)-2-((2-hydroxybenzylidene) amino)-9-((2-hydroxy ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (S3), and (E)-2-(((9-((2-hydroxy ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)imino)methyl)benzoic acid (S4). Then, spectroscopic analyses such as Elemental Analysis, UV/VIS, Mass spectra, FTIR, 1H,13C-NMR were made to recognize these bases. In the second part, the ability of synthesized bases to undergo a charge transfer reaction was examined in an ethanolic solution at 28℃ with Iodine (I2) and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptors. The nonbonding interactions were studied using Benesi–Hildebrand method to estimate the stability parameters for all formed charge transfer complexes. The results of CT-energies and Gibbs free energies (ΔG˚) confirmed the stability of these complexes, and all complexes follow the Benesi–Hildebrand equation. The results showed that the DDQ-complexes have an affinity constant ranging from (916.6–24,400) mol−1.L higher than the affinity constant of I2-complexes which ranges from (428.5–7000) mol−1.L. Moreover, the KCT of S2 > S1 and KCT of S4 > S3 were as follows [1222.2 for S1-I2, 4333.3 for S1-DDQ, 2812.5 for S2-I2, 4800 for S2-DDQ] and [3809.5 for S3-I2, 12,200 for S3-DDQ, 7000 for S4-I2, 24,400 for S4-DDQ] due to the specific properties of each compound. The direct energy gap (Egdir) of each complex was also obtained by applying Tauc's method. Iodine complexes with S1, S2, S3, S4, as well as S1-DDQ displayed energy gaps equal to (5.14, 5.11, 4.61, 4.51, and 3.90) eV, respectively, and are likely to act as insulators. In contrast, the DDQ complexes of (S2/S3/S4) bases exhibited Egdir values at (2.85–2.24) electron volts which makes them suitable for semiconductor material usage. Finally, the third part of this work included a theoretical study using DFT/B3LYP/3-21G method to illustrate and prove the experimental findings, which were consistent with the theoretical results.
In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
In this work we prepared some schiff bases by condensation urea and benzaldehyde or its derevative ( bromo benzaldehyde or hydroxy benzaldehyde ) as ( 1 : 1 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A1 , B1 , C1 , D1 , E1 , F1 , G1 ) and ( 1 : 2 ) mole ( urea : benzaldehyde or its substitution ) to prepare compounds ( A2 , B2 , C2 , D2 , E1 , F2 , G2 ) . The prepared compounds identified spectroscopic by infrared spectroscopy FT-IR and Thin layer chromotography T.L.C . The force constant calculated from the wave number for the carbonyl stretching from FT-IR chart and by using the following equation K = 4?2C2?'2? The change in double bond order for carbonyl deteremined in according with some past re
... Show MoreThe main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
The goal of this discussion is to study the twigged of pure-small (pr-small) sub- moduleof a module W as recirculation of a small sub-module, and we give some basic idiosyncrasy and instances of this kind of sub-module. Also, we give the acquaint of pure radical of a module W (pr-radical) with peculiarities.
Some coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral structures
... Show MoreSome coordination complexes of Co(ІІ), Ni(ІІ), Cu(ІІ), Cd(ІІ) and Hg(ІІ) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(ІІ) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (ІІ) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahed
... Show MoreSome coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral st
... Show MoreVibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree
... Show MoreDensity functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show More