This article studies a comprehensive methods of edge detection and algorithms in digital images which is reflected a basic process in the field of image processing and analysis. The purpose of edge detection technique is discovering the borders that distinct diverse areas of an image, which donates to refining the understanding of the image contents and extracting structural information. The article starts by clarifying the idea of an edge and its importance in image analysis and studying the most noticeable edge detection methods utilized in this field, (e.g. Sobel, Prewitt, and Canny filters), besides other schemes based on distinguishing unexpected modifications in light intensity and color gradation. The research as well discusses the benefits and limitations of each technique, emphasizing their efficacy in addressing various kinds of images and the dares they face in complex environs. This article offers a comparative analysis of the numerous approaches utilized in edge detection, which assistances in selecting the suitable technique according to the requirements of applications, like video processing, object recognition, medical image analysis, and computer vision.
Diabetic foot ulcer (DFU) or Lower limb ulcers are one of the major complications caused by diabetes mellitus especially when patients fail to maintain tight glycemic control. DFU is linked to multiple risk factors along with the genetic factors and ethnicity which play a significant role in the development of DFUs through their effects on multiple aspects of the pathophysiological process. This narrative review aimed to summarize all the previous studies within the last ten years associating gene polymorphism and DFU. Polymorphism associated with vascular endothelial growth factor (rs699947), the G894T polymorphism of the endothelial nitric oxide synthase gene, interleukin-6–174 G>C gene polymorphism, heat shock protein 70 gene polymorph
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
In recent years, there has been a significant increase in research demonstrating the new and diverse uses of non-thermal food processing technologies, including more efficient mixing and blending processes, faster energy and mass transfer, lower temperature and selective extraction, reduced thermal and concentration gradients, reduced equipment size, faster response to extraction control, faster start-up, increased production, and a reduction in the number of steps in preparation and processing. Applications of ultrasound technology have indicated that this technology has a promising and significant future in the food industry and preservation, and there is a wide scope for its use due to the higher purity of final products and the
... Show MoreThe challenge to incorporate usability evaluation values and practices into agile development process is not only persisting but also systemic. Notable contributions of researchers have attempted to isolate and close the gaps between both fields, with the aim of developing usable software. Due to the current absence of a reference model that specifies where and how usability activities need to be considered in the agile development process. This paper proposes a model for identifying appropriate usability evaluation methods alongside the agile development process. By using this model, the development team can apply usability evaluations at the right time at the right place to get the necessary feedback from the end-user. Verificatio
... Show MoreExponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.
In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher us
... Show MoreCanonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.
In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe
... Show MoreThe main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
Lymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More