Preferred Language
Articles
/
2hatUocBVTCNdQwCDkSU
Community detection model for dynamic networks based on hidden Markov model and evolutionary algorithm
...Show More Authors

Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Modeling and Analyzing the Influence of Fear on the Harvested Modified Leslie-Gower Model
...Show More Authors

A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL
...Show More Authors

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A Note on the Hierarchical Model and Power Prior Distribution in Bayesian Quantile Regression
...Show More Authors

  In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the  and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 07 2023
Journal Name
Journal Of Educational And Psychological Researches
The impact of The Bransford and Stein Model on the Achievement of Fifth-Grade Literary Students for Geography and their Reflective Thinking
...Show More Authors

The current research aims to identify the effect of the Bransford and Stein model on the achievement of fifth-grade literary students for geography and their reflective thinking. To achieve the objective of the research, the following two null hypotheses were formulated:

  • There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental group students who studied geography using the Bransford and Stein model and the average scores of the control group students who studied the same subject in the usual way in the achievement test. 2- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental gr

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Int. J. Adv. Appl. Math. Andmech.
The effect of external source of disease on the epidemic model
...Show More Authors

Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Estimate Gas Initially in Place of Tight Gas Reservoirs Based on Developed Methodology of Dynamic Material Balance Technique
...Show More Authors

With growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti

... Show More
Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 28 2017
Journal Name
Iraqi Journal Of Science
3D Building Reconstruction Using DEM and Mosaic Model
...Show More Authors

A digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Oct 07 2020
Journal Name
Journal Of Interdisciplinary Mathematics
Discrete an SIS model with immigrants and treatment
...Show More Authors

In this paper, a discrete SIS epidemic model with immigrant and treatment effects is proposed. Stability analysis of the endemic equilibria and disease-free is presented. Numerical simulations are conformed the theoretical results, and it is illustrated how the immigrants, as well as treatment effects, change current model behavior

View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Crossref