Preferred Language
Articles
/
2hatUocBVTCNdQwCDkSU
Community detection model for dynamic networks based on hidden Markov model and evolutionary algorithm
...Show More Authors

Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over time. Here, we adopt a new perspective towards detecting the evolution of community structures. The proposed method realizes the decomposition of the problem into three essential components; searching in: intra-community connections, inter-community connections, and community evolution. A multi-objective optimization problem is defined to account for the different intra and inter community structures. Further, we formulate the community evolution problem as a Hidden Markov Model in an attempt to dexterously track the most likely sequence of communities. Then the new model, called Hidden Markov Model-based Multi-Objective evolutionary algorithm for Dynamic Community Detection (HMM-MODCD), uses a multi-objective evolutionary algorithm and Viterbi algorithm for formulating objective functions and providing temporal smoothness over time for clustering dynamic networks. The performance of the proposed algorithm is evaluated on synthetic and real-world dynamic networks and compared against several state-of-the-art algorithms. The results clearly demonstrate the effectiveness of the proposed algorithm to outperform other algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
2021 International Conference On Intelligent Technology, System And Service For Internet Of Everything (itss-ioe)
Application of MQ-Sensors to Indoor Air Quality Monitoring in Lab based on IoT
...Show More Authors

Scopus (12)
Crossref (11)
Scopus Crossref
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Sat Mar 29 2014
Journal Name
International Journal Of Academic Research In Progressive Education And Development
The Effects of Problem-Based Learning on Self-Directed Learning Skills among Physics Undergraduates
...Show More Authors

The aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq. In this study, the pre- and post-test were done and the instruments were administered to the students for data collection. The data was analyzed and statistical results rejected null hypothesis of this study. This study revealed that there are no signifigant differences between PBL and PBL with lecture method, thus the PBL without or with lecture method enhances the self-directed learning skills bette

... Show More
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The classification of fetus gender based on fuzzy C-mean using a hybrid filter
...Show More Authors

This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????
...Show More Authors

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
International Journal Of Modern Trends In Engineering And Research (ijmter)
An image processing oriented optical mark reader based on modify multi-connect architecture (MMCA)
...Show More Authors

Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota

... Show More
Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Effluent quality assessment of Al-Diwaniyah sewage treatment plant based on wastewater quality index
...Show More Authors

Treated effluent wastewater is considered an alternative water resource which can provide an important contribution for using it in different purposes, so, the wastewater quality is very important for knowing its suitability for different uses before discharging it into fresh water ecosystems. The wastewater quality index (WWQI) may be considered as a useful and effective tool to assess wastewater quality by indicating one value representing the overall characteristic of the wastewater. It could be used to indicate the suitability of wastewater for different uses in water quality management and decision making. The present study was conducted to evaluate the Al-Diwaniyah sewage treatment plant (STP) effluent quality based on wastewa

... Show More
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref