This study aims to investigate the adequacy of composite cellular beams with lightweight reinforced concrete deck slab as a structural unit for harmonic loaded buildings. The experimental program involved three fixed-ends supported beams throughout 2140 mm. Three concrete types were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber Reinforced Aggregate Concrete (LWACF). The considered frequencies were (5, 10, 15, 20, 25, and 30) Hz. It was indicated that the harmonic load caused a significant influence on LWAC response (64% greater than NWC) and lattice cracks were observed, especially at 30 Hz. As for LWACF slab, no cracks appeared, and the harmonic load had a minor effect on the vibration amplitude. Adding fiber to LWAC improved its behavior and made the amplitude no more than 11.11%, corresponding to NWC. So, the response variance for the LWACF was approximately negligible compared with NWC. It is worth mentioning that the study produced a lightweight structure that resists harmonic vibrations with a small strength reduction by using LWACF as a deck-slab for cellular specimens and provides a structural element with a smaller density of about 27%, which presents an advantage for the cellular beam that is adopted for low-loaded structures.
The thermal distribution in the diseased tissue treated by different methods faces the problem of an uncontrollable defused heat. In the present article, we use a plasmonic bowtie nanoantenna working in the near infrared region to enhance the temperature confinement in the tissue. The Computer Simulation Technology Studio Suite package version 2019 was used to execute the design of both plasmonic nanoantenna and the tissue. Gold nanostructure and silicon carbide dioxide are the components the plasmonic nanoantenna in the bowtie shape. The results showed that the distance between the tumor tissue and the antenna is important to determine the intensity field where the maximum field is 5.9*107 V/m at a distance of 100 nm. The maximum
... Show MoreFive levels of Zn-EDTA fertilizer and foliar application of boron were used to study the local rice response through studying of some vegetative and reproductive growth characters, by conducting two field experiments at Kanipanka Agricultural Research Station during the summer season of 2004 by using RCBD with three replications. Significant differences were found in studied characters, there were increase in the number of days from seeding to 50% flowering (94.330-96.233) days, from 50% flowering to physiological maturity (37.50-38.28) days, plant height (82.50-91.423) cm and LAI (5.441-7.525). Reproductive characters such as number of grains panicle-1 (74.11-85.88), number of panicles m-2 (321.00-426.083), biological yield (8166.166-11082
... Show MoreThis study was conducted in a lath house, Dept of Hort. and Landscape, College of Agricultural Engineering Sciences, Univ. During the 2021 growing season, Baghdad will investigate the influence of organic and Biological fertilizers on three Citrus rootstocks' growth and leaf mineral content. The first factor is the addition of liquid organic fertilizers Vit-Org (O) at three levels without addition (O0), soil addition at 10 ml.L-1 (O10) and soil addition at 20 ml.L-1 (O20). The second factor is the addition of nitrogen-fixing bacteria without addition (N1), add 30 ml.Transplant-1 of Azotobacter chroococcum (N2) and add 30 ml.Transplant-1 of Azospirillum brasilemse (N3). The third factor is three citrus rootstocks: sour orange (R1), R
... Show MoreResponse of cross-ply plates subjected to transient load is obtained using five variables refined plate theory, and four variables plate theory. Equations of motion are derived through the principleof virtual work. Navier series used for simply supported laminated plates. The results of this work are presented for different parameters, such as the ply number, thickness, and modulus ratio with mechanical load (sinusoidal and step pulses), which are compared with those obtained using high-order shear plate theory. Five variables of refined plate theory give results that are considerably different from the four variables of refined plate theory and higher-order theory. The obtained results from the four variables theory have the same behavior
... Show MoreThe aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility an
... Show MoreThis paper experimentally investigated the dynamic buckling behavior of AISI 303 stainless steel aluminized and as received intermediate columns. Twenty seven specimens without aluminizing (type 1) and 75 specimens with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), were tested under dynamic compression loading (compression and torsion), dynamic bending loading (bending and torsion), and under dynamic combined loading (compression, bending, and torsion) by using a rotating buckling test machine. The experimental results werecompared with tangent modulus theory, reduced modulus theory, and Perry Robertson interaction formula. Reduced modulus was formulated to circular cross-
... Show MoreFatigue failure is almost considered as the predominant problem affecting automotive parts under dynamic loading condition. Thus, more understanding of crack behavior during fatigue can strongly help in finding the proper mechanism to avoid the final fracture and extent the service life of components. The main goal of this paper is to study the fracture behavior of low carbon steel which is used mostly in automotive industry. For this purpose, the fractography of samples subjected to high and low stress levels in fatigue test then was evaluated and analyzed. Hardness and tensile tests were carried out to determine the properties of used steel. Also, the samples were characterized by microstructure test and XRD analysis to examine the con
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreThis paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho
... Show More