This study aims to investigate the adequacy of composite cellular beams with lightweight reinforced concrete deck slab as a structural unit for harmonic loaded buildings. The experimental program involved three fixed-ends supported beams throughout 2140 mm. Three concrete types were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber Reinforced Aggregate Concrete (LWACF). The considered frequencies were (5, 10, 15, 20, 25, and 30) Hz. It was indicated that the harmonic load caused a significant influence on LWAC response (64% greater than NWC) and lattice cracks were observed, especially at 30 Hz. As for LWACF slab, no cracks appeared, and the harmonic load had a minor effect on the vibration amplitude. Adding fiber to LWAC improved its behavior and made the amplitude no more than 11.11%, corresponding to NWC. So, the response variance for the LWACF was approximately negligible compared with NWC. It is worth mentioning that the study produced a lightweight structure that resists harmonic vibrations with a small strength reduction by using LWACF as a deck-slab for cellular specimens and provides a structural element with a smaller density of about 27%, which presents an advantage for the cellular beam that is adopted for low-loaded structures.
The present work aimed to study the efficiency of thermal osmosis process for recovery of water from organic wastewater solution and study the factors affecting the performance of the osmosis cell. The driving force in the thermo osmosis cell is provided by a difference in temperature across the membrane sides between the draw and feed solution. In this research used a cellulose triacetate (CTA), as flat sheet membranes for treatment of organic wastewater under orientation membrane of active layer facing feed solution (FS) and draw solution (DS) is placed against the support layer. The organic materials were phenol, toluene, xylene and BTX (benzene, toluene, and xylene) used as feed solution. The osmotic agent in draw solution was
... Show MoreCalcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show MoreThe nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the de
... Show MorePVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreLaser etching may be an alternative to acid etching of enamel and dentin. Several characteristics of irradiated dental hard tissues have been considered advantageous, microscopically rough surfaces without demineralization, open dentinal tubules without smear layer production and dentin surface sterilization. The aim of this study is to determine and compare histology the microleakage in class V cavity restored with a light cured composite after conditioning the samples(tooth surface) with 1-acid etching, 2-Q-switched Nd:YAG Laser etching and finally 3- acid and laser etching. Materials and methods: Twenty four non carious human extracted teeth were used in this study. The samples were equally grouped into four groups of six teeth each.
... Show MoreBackground: The aim of this study is to evaluate the color change ∆E of the dental enamel following treatment with 2 kinds of protector (icon infiltrant, clinpro varnish) before fixed orthodontic treatment to avoid the possible white spot lesions. Materials and Methods: Fifty four subjects treated with fixed appliances were divided into 3 groups: the 1st group was control, while the 2nd and 3rd groups were treated with icon infiltrant and clinpro varnish before bonding procedure, respectively. Color parameters (L,a,b) were recorded for the middle and gingival thirds before and after bonding procedure to get the ∆E of each group. Results: One-way ANOVA test showed a non-significant difference in ∆E between the 3 groups a
... Show MoreIn this paper the reinforced materials manufactured from steel continues fibers are used in Aluminum matrix to build a composite material. Most of researches concentrated on reinforced materials and its position in the matrix according to its size and distribution, and their effects on the magnitude of different kinds of the stresses, so this paper presents and concentrate on the geometrical shape of reinforced material and its effects on the internal stresses and strains on the composite strength using FEM as a method for analysis after loaded by certain force showing the deference magnitudes of stresses according to the different geometrical shapes of reinforced materials.